Blockchain-based Service Network User Manual

Version 1.8.1

BSN Foundation

Blockchain-based Service Network User Manual

CONTENTS

I BSN INEOAQUCTION ...ttt ettt ettt at e et e e sbe e e bt e sabeeseesaneeane 1
1.1 Brief INtrOQUCTIONoeiiuiiiiiieiieeee ettt ettt sttt sb e bt ettt sbe et eae e 1

1.2 BSIN SEIVICES ...eeutiiiriiiietiniieiteteteettetest et ettt sttt et sa e sttt e b et e sbeeseesse s e sbeessemsentesbeennennensesseennennens 2
1.2.1 PermiSSIONEd SEIVICES....ciuerueeriertirririietentesieetete ettt r e st re s nenresreenenre e 2

1.2.2 PermiSSIONIESS SEIVICES ..cverueeverrirririretenresiieeetesre sttt sttt resreeseesresresreennesrenne 2

1.2.3 INETCHAIN SEIVICES ..cuiiitieitiesieeriiesieesteeseesttesteesteesteesteesseesseesseesseesseesssesssesssesssesseesssesssesssessees 3

1.3 TOIMINOIOZIES . .vieuvieiiieeiieie ettt ettt ettt et e te e e teeateeateeabeeabeenbeenteenseenseenseensaenseenseenseensesnsennsennsennns 3

2 RELEASE INOTES ..cuvieiiiiiieiiie ettt ettt e e s it e e bt e s st e s e e s se e e n e e nneesar e e neeeane 5
3 QUICK STATT ..ttt et b e st e bbbt s e e b e e e an e e nneenareenneeeane 9
3.1 Permissioned BlOCKCRAIN.c...coiiiiiriiiiiiiiciceece ettt 9

3.2 Permissionless BIOCKCHAINcc.ooiriiiiriiniiiiiieicecece ettt 10

3.3 DOCUMEITATIONeutiteeiieiieiteetietete et et et sttt et e tesbeeste e teebeem s e eeabeeaeenteeeabeeseententesbeeneententesseensensenes 11

4 Registration and ACHVALIONc.eeieeiiiierieeiierieest ettt sre e st esbeesreesaeesaneennees 12
4.1 REEISIALION .c..eoutiiiiiietieiteteeete ettt ettt ettt ettt et s bbb e st sbe et et e nbeebeesb et e sbeestennentesbeesnennens 12

A2 LOZIN ittt bbbttt e b ettt h e bt ettt e bt e bt e sheebeennene 14

4.3 FOTZOt PASSWOI ...ttt ettt a et et ae st e et e e be e st e tesaeebeeneeneens 15

5 PermiSSIONEd SEIVICESeervieruiieiiieiieeitieeie ettt ettt ettt e st e st e bt e saeesbeesaeeeneesaeeereesneeenne 17
5.1 OVEIVIEW.cuiiiiiiiiiieeitetet ettt ettt ettt h ettt s b ettt s bt s ettt eb e e st et e sb e e bt es b et e sbeebe et eaesbeestennenne 17

5.2 BSN Keys and Certificates MeChaniSIm..........c.cecuieriieriieriienieenieenieenieeneesieesieesieesieesteeseeesseesseesseesseens 18
5.2.1 BSN Keys and Certificates MeChaniSmcccevvereeriereneniieneneneeeesesesieeseeseesnesseeneesnens 18

5.2.2 Locally generate the DAPD aCCESS KEY PAIT ..eeuververiieiiiieeieeieeieee e 19

5.3 DApp Services Publication and PartiCipationccceceeeieerieriieneesieesieesieeseesieeseesieesreesseesseeseeens 20
S5.3.1 OVEIVIEW .euteuietiitiriteteste st et et et sb et e b e st s bt e e besbe s bt e bebesb e e st enbe b e sbeeseenbesbesbeensenbenresneensensens 20

5.3.2 DAPD Services PUDIICAION ...cccueeiiiiiiiieieeieetceie ettt ettt 20

5.3.3 DAPD Services Mana@emMENtc.cecveruerrierrierrieeieeieenteesseesseesseesseesseessesssesssesssesssesssesssesnns 27

5.3.4 DAPD Services PartiCiPationcoceevueerieriieriieeiiieieeie ettt ettt st ettt s s et 30

54 Off-BSN System AcCeSS GUIACcc.eeiuieriiiiiieiieiieiteiteieeiee sttt ettt eteeste e teeste e teeseenseenseenseenseens 36
S4.1 OVEIVIEW .eutteteeieeie et esteesteeste e e eteeteeteeteeteesteenseenseenteenteenteenseenteenseenseenseenteenseensesnsennsesnes 36

5.4.2 BSN Smart Contract Package ReqUITEMENtSccvvervieriiernienienieeieeieeie e 40

543 PCN Gateway Fabric AP ..ottt st ee e 46

5.4.4 PCN Gateway FISCO AP ..o s s s 72

5.5 Development SDK and EXamPIESscccieriieriiiriieniieiieiieieeieeieesieete ettt ete e nteesseeneeenseens 96
5.5.1 BSN Gateway SDK EXAMPIEcceeiieiiriiriieierienienteeresiee ettt see 96

Blockchain-based Service Network User Manual

5.5.2 Sample Smart Contract PaCkages........ccccuvirerueirinenienieinenereeesesesreeeese e 97
5.6 BSIN TESNEE SETVICES ..veuvitieuieieniintieitetente ettt ettt et e ettt ea e te bt bt et e tesbesbtententesbeestebenbesbeentenaenee 97
5.0.1 OVEIVIEW .c.ueeuiitiiieieetenie sttt sttt ettt st r e st e st r e s bt et enesr e s b e e e e nnesresmee e e sresreeneennenrens 97
5.6.2 Permissioned DApp Service PUblicationc.cccveviereiinineniccinineneeeeseseeeeee e 97
5.6.3 Interchain Services 0n BSN TESNELcceeeeverirririeierienieeeenesree e 99
6 Dedicated NOAE SEIVICESueerureriieriieiiierie ettt sttt sb e st beesseesareesneeeneennees 100
0.1 OVEIVIEW ..ttt ettt ettt ettt ettt bt et ettt ettt s bt e be e s et e s bt e s esa et e seeesnennesaeeenennennes 100
6.2 ProOjeCt MANAQZEIMENEeeuveiieiieiieieiesiierttesitesttesttesstesseessaessaesstesssesssessseessesssesssesssesnsesnsesnsesnsesnsennes 100
LT B O <. Ll o (0 o1 - IO OO PR PRUPROP 100
6.2.2 Edit PrOJECES c.veiiiiiiiiiiiciicctet e e e 103
6.2.3 DELEte PrOJECLS c.veevvieiieriieitiesiiesitestte sttt ettt ettt st et e sbeesbeesbeesbaesbeesaeesbeesseesntesnaesaeenaeas 104
6.2.4 View Project Detailscccceviiniiiiniiniiiiic e 104
6.2.5 UnSubSCIribe ProJECtS...c.iiuiiiiiiiiiiiiiiiiicecc e 109
6.2.6 Edit AUthOTIZEd ACCOUNLeerviiiriieieiirieeeeterte sttt resre e e 110
6.2.7 Configuration UPradecccooiiiiiiniiniiiiiiiiiiicce e 110
6.3 ACCESS INSTIUCLIONS ...ttt ettt ettt ettt e st e e s te bt et e e nteeae et e naeebeeneeneeneas 113
6.3.1 ConsenSys QuUorum AcCesS INSIIUCHIONeevviervieriieniirieniienterte et seees 113
6.3.2 Hyperledger Fabric Access INStrucCtion........ccccovvieiiniiniiiiiiicniniiicrceeceee e 114
6.3.3 Hyperledger Besu Access INSIUCTIONecveertierieeriiereeniieniiesieseeste et seee e 117
7 PermiSSIONIESS SETVICES ...eeveeruririieeiieeitieniie et e ettt e e st s be e st e et esaeesbeesateebeesaeesaseesaeeenneenaees 120
Tl OVEIVIEW .ottt ettt sttt ettt sttt ettt s h et b e bt ettt s bt e bt e b et s bt e st et e bt ebeestentenbeebsensennes 120
7.2 SCLECE PLANS ...ttt ettt bt ettt en et et et eneentenees 120
7.3 Create and Manage ProOJECTS.......ccuiiieiieiieiieiieiiesteseeeteeteetesteeaessaesaeeaesssesssesssesssesssesnsesnsennns 124
7.4 Off-BSN System ACCESS GUIAC.ccuueiuieiuieriieiiieeiieriiesitesteetestestestestesteetesntesntesseeenteenseeneesnseenes 126
TA L OVEIVIEW ettt st a e b st a e bbb b saeenesne e 126
TA2 EHREICUIM .c..eeiiiiitieietee ettt sttt st e e bt s it e e b e s b e e e e b e sresneennenrene 127
TA3 EOS ettt h b E et r et r e e ens 128
A S U< /oL SO PP PUPOPTO 128

TA.5 AIUSECOS weeeeeeeeeeeeeeeeeeeee ettt e e e e e e et eeeeesasseereeeeseeaesrrareeeeseeaananes HRIRE X HEE.

T4.6 OaSIS NEIWOIK....cciieeiiiiiee ittt ettt e st e e e e s e e e s ssabbeeesssessennnes HEiRIREXPE.

A) | < Vs [] AR HEiRIREXPE.

TA8 CASPET wvvrverreneeeerierieeenestessesseseesessessessesessassessesessessessensesessessenseseasessesseneas HRIRE X HE.

TA.D FINAOTA ettt et e et e e e e e e e e eee e e s asaeeeesasneeeeeaneneesaans HRIRE X HE.
A L0 [| PP PUPUPOPO 129

Blockchain-based Service Network User Manual

7801 KIAYML...ooooeeoeeeeeeeeeee e s s s s s BRIk EXBE.
8 INLETCHAIN SEIVICES ...uutiiuiiiiiietieriie ettt ettt ettt et sttt e st e bt e st e e bt e st e e saeesabeesaeeenneesaeas 129
8.1 Interchain Service Managementccocverierierieeieiereseeeestes et etetestesseeseesessesseessensessesseensensens 130
8.1.1 Open INterchain SEIVICEScccevereeiririerieiiirerteeee ettt s sre s 130
8.1.2 View INterchain SEIVICEScccuvireerririiiinieereseeeen et 132
8.1.3 Deactivation and Activation of Interchain Services.........ccocveereereeneenieenieeneeneeneeseeniens 133
8.2 Interchain Services based on Poly ENterpriSe.......cccuecierieriieniieniienieniieniiesiiesiteseesee e seveseve e 134
B.2.1 OVEIVIEW ...ttt ettt ettt ettt st r e s bt n e r e e bt et e st sr e e e e nesnesne e e ennennes 134
8.2.2 Interchain Services based on Hyperledger Fabric..........coveevecinininennininencncnenene 136
8.2.3 Interchain Services based on FISCO BCOSc.cooeiiiirieieeneneeeneseseeenesneeeeee e 136
8.2.4 Interchain Services based on Ethereum Ropstencocecvevininiiniininiiiiicncicee, 137
8.2.5 Interchain Services based on N0 TESINEEccevveeriereireeiieiieieereeeeseee e 138
8.3 Interchain Services based on IRITAovoovoeeeeeeeeeeeeeeeeee oo eee e ees e e LRI E NP .
B.3.1 OVEIVIEW aereeeeeeeeeeeeereesseeseeseesssssesseseessessessensssessessessensssessesseseessessenss FRURENPE.
8.3.2 Interchain Architecture based on TRITAcvovveeeeeeeeeeeeeeeeeeereeeeeeseeas HERIREXEE.
8.3.3 Interchain Services in BSN TEStNE c..oveeverveeeeeeeeeeeeeeeeeeeseeeeereieseseneas HERIREXEE.
8.3.4 Interchain Services based on Hyperledger Fabric..........ccccoevvvvveerrvnnee. FRURENPE.
8.3.5 Interchain Services based on FISCO BCOSvoveveeeeeveeeeeeeereerseesieenns FRURENPE.

O OTACLE SEIVICES eveenveeeeeeeeeeee e et ee e e et e et e et e et e et eeee et e et eeeeeeeseeeeeeseeneeennes EiRIREXNFLE.

9.1 Oracle Service based on Chainlinkcccceoeverinieneninininneecceeeene HiRIRE L.

0. 1.1 OVEIVIEW etrveeeereeeeeeeeeeereeeseeseesssesessessesessessessensasessessensasessessessensssessenss FARURENPE.

9.1.2 Invocation of the Chainlink oracle service in the BSN Testnet FARURENPE.

9.1.3 Example of calling BSN IRITA Chainlink service across chains.......... HRIRE X 5.
1O TDE S@IVICES ..eeuveeueiauiieniienteeeiteette sttt et e sate et esate st eesbe e bt e sate e bt e easeesbeesabeenbeeenseenseesareenseennne 140
LO.T OVEIVIEW. .ttt ettt ettt ettt ettt sb ettt bt bt et bt b e e bt et et ebe e bt et enbesbeesnetenbeebeenbenees 140
10.2 ACCESS INSTIUCLIONSeeutiniiiieiieiesiceitetet ettt ettt ettt et s b ettt sbe bbb enbenees 141
10.2.1 Service publication of permissioned Chains...........ceecverereriereneneniesene e 141
10.2.2 Service editing and upgrading of permissioned chains.......c..cceceeveerieniiniienieniienienienee, 145
10.2.3 Access tO PermiSSIONIESS SEIVICES ...cuververrerrerierterieetertestesseetestessesieesessessesssessessesseensensenee 146
10.2.4 BSN TSNt SEIVICES..everueeuterterterueertertestertentestesseetessessesseessessessesseesessessesseensessessessensenne 149
L0.3 MY IDE .ttt etttk h ettt h ket et n bt et e b et ne et b et ens 149
L1 DID SEIVICES ..eeureeieeitieniieereeeieeetee st st siee et sat e s b e st e st e sare e reesan e e nseesaneesneesaneesseesareenneeeane 149
L1.1 OVRIVIEW . cutttieiieieetteieete ettt et et e et et e et e et e e st et e eeeaeent e s e sseemeemsenseeseeneansenseeseensanseaseeneensansenseensensensas 149
LL.2 HTTP APL ettt sttt b ettt s et et et e st e b et et et ebesbe s eeenes 150

Blockchain-based Service Network User Manual

LL.2.1 DID AP ...iiiieieieeierieteeste sttt sttt sttt s be st et bt st e st e e e st st e st e te st ese st e sbentenesbesbeeenes 153

L1.2.2 ISSURT cuveeutiiiieieet ettt s s e s ae e s e s s sae e s ne e s e 156

L1.2.3 Credential...cocc.ee ittt ettt ettt et e st e st e e s sab e e sabe e s ba e e baeesareas 161

11.2.4 Identity HUD ..coooiiiiiiiiiiii s 164

11.3 RESPONSE COUE...c.ueiiiiieiieiieie ettt ettt ettt et e teeteeteebe e teesbeenseenteesseenseenseenseenseensesnseensesnsesnsennes 171
L4 SDK ettt h bt a bttt b e bbbt bttt b e b e e ens 174
LLA.T DID ittt sttt sttt s s bt e st et et st e b e st ebe st et e e e st et e st e be st eb e st e beneenesbeneeneenes 175

D142 ISSURT .ttt st s e et s s an e s an e s neeanesare e 180

T1.4.3 Credential...cocc.cicee ettt ettt et et e e st e e st e e s bt e e s abe e s be e e baeesareas 184

11.4.4 TAentity HUD coveeiiiiiiiieeeee ettt sttt st ettt e 187

12 Account Mana@@emeENtccoouuiiiiuiiiiiiiiiiiie ettt s s s 195
13 Online DOCUMENTATION ...eeuviiiieiieeiie ettt ettt ae e e b e sbee s b e e sbeeesneenaees 196
14 COMEACT US..uiiiiiiiiiiiiieieiiiee ettt ettt e e sttt e e s sttt e e e s bbt e e e s sabte e e e sabbeeeesnbaaeesensaeeeennsseeens 197

Blockchain-based Service Network User Manual

Preface

Blockchain-based Service Network (BSN or Service network) is a worldwide
infrastructure network that provides a one-stop-shop solution for blockchain and
distributed ledger technology (DLT) applications (DApp). BSN is a complex system
that involves programming, software development, resource and environment
configurations, application deployment, gateway APIs, local SDK, key certificates, etc.
To facilitate utilization, BSN International (www.bsnbase.io) has prepared this
document for developers and users to learn how to use BSN. We hope that BSN will
become the first choice for developers to develop and run their DApps.

BSN provides developers three types of services: Permissioned, Permissionless, and
Interchain services.

Permissioned services are divided into two parts. The first part demonstrates how
developers can deploy smart contracts to the selected public city nodes through the BSN
portal; the second part describes how developers can connect their off-BSN systems to
the corresponding smart contracts through the public city node gateway and conduct
data transaction processing.

Permissionless services determine how developers can choose the appropriate public
city nodes, plans, and public chain frameworks, to deploy and publish their DApps.

BSN's "Interchain Communications Hub" (ICH) integrates the interchain solution based
on the relay chain mechanism (Poly Enterprise developed by Onchain). It enables cross-
chain interoperability among standard permissioned chains, open permissioned chains
and public chains. We will continue to integrate more cross-chain protocols to achieve
the interoperability of all blockchains adapted to BSN.

Please feel free to contact us if there are any further questions. Our contact information
can be found in Chapter 14. Contact Us. We strongly recommend users access the
Online Documentation section to explore BSN technical details further.

Blockchain-based Service Network User Manual

1 BSN Introduction

1.1 Brief Introduction

The BSN design and concept as taken from the Internet, is a connected set of devices
across data centers using the TCP/IP protocol. BSN is formed by the connection of the
public city nodes using a set of blockchain operating environment protocols. Just like
the Internet, BSN is also a cross-cloud, cross-portal, cross-framework, global
infrastructure network.

With BSN, there are three types of participants: cloud service providers, blockchain
framework providers, and portal operators.

Cloud service providers, through the installation of free BSN public city node software,
can make their cloud service resources (computing power, storage, and bandwidth)
accessible and sell through BSN to end-users.

Blockchain framework providers align with the BSN’s framework adaptation standards
and deploy them on BSN so developers can use it to develop and deploy applications.
The Permissionless service only applies to the BSN international portal and
international public city nodes.

Portal operators can easily and quickly build a Blockchain as a Service (BaaS) platform
on their existing websites using BSN APIs. This allows them to provide BSN
capabilities to their end users without users leaving their websites.

BSN is an open network that any cloud service provider, framework provider, or portal
operator, that complies with BSN requirements and standards is free to use and stop
using the service network at any time.

Similar to the Internet, most users of BSN are developers and technology companies.
They can use any BSN portal to purchase cloud resources that charge based on
transactions per second (TPS), storage quantity, and bandwidth from any public city
node around the world. They select any pre-adapted framework to conveniently develop,
deploy, and manage permissioned blockchain applications at a very low cost.
Blockchain developers only need to deploy the application to one or more public city
nodes on BSN so participants can connect to the application at no cost through any
public city node gateway. All deployed applications share server resources in every
public city node. For high-frequency applications, public city nodes can intelligently
allocate a dedicated peer node with high processing capacity. For low-frequency
applications, they share the same peer node. This resource-sharing mechanism allows
BSN to reduce the resource cost to one-twentieth of the cost of traditional blockchain
cloud services.

BSN is a blockchain infrastructure network. Just as households do not need to dig their
own wells, but instead, enjoy the water supply services provided by public water plants
in cities, BSN blockchain application publishers and participants do not need to buy
physical servers or cloud resources to build their blockchain operating environment.

1

Blockchain-based Service Network User Manual

They use the public services provided by BSN and rent shared resources as needed, thus
greatly reducing their costs. According to recent research, it takes about 20,000 USD
per year for developers to build and deploy a traditional permissioned blockchain LAN-
type environment. However, with BSN, the minimum cost to run such an application is
as low as one dollar a day. Cost is a huge factor and will encourage a large number of
small, medium, and micro enterprises and even individuals (including students) to
innovate and start businesses through BSN. This will undoubtedly promote rapid
development and popularization of blockchain technology. In general, the development
from the closed architecture of the traditional blockchain to the resource-sharing
architecture of BSN completely mimics the development process of the Internet, which
gathered numerous isolated LANSs in the early days to the global connectivity facilities
we have today. We hope to make BSN the blockchain Internet.

1.2 BSN Services

As mentioned above, BSN provides a one-stop-shop solution for developers to deploy,
operate, and manage DApps. BSN provides three types of services: Permissioned,
Permissionless, and Interchain services.

1.2.1 Permissioned Services

BSN is continually adapting most of the mainstream permissioned blockchain
frameworks. On the BSN portal users can deploy DApps on any public city nodes based
on the type of selected framework and the number of peer nodes. The number of peer
nodes per application can be up to 60 and can be distributed among public city nodes
based on different cloud services. Users can easily complete the DApp deployment
process by uploading smart contracts and configuring the corresponding parameters.
This service mode allows developers to focus on business innovation, smart contract
programming. All work related to environment construction, system maintenance,
application deployment, node transmission, and network configuration is done by BSN.

The pricing strategy for the Permissioned service is based on three resource elements
of each peer node of the published application. The three elements are TPS, storage,
and data traffic. Among them, TPS and storage in the BSN portal are pre-paid, while
data traffic will be charged based on actual usage. This pricing strategy is designed to
minimize resource costs and provide users with the best services. Based on the data
provided by the BSN portal, if a user deploys a three-peer Fabric DApp, and each peer
node supports 10TPS and 10GB storage capacity, the monthly fee is only 20 USD.

The pricing strategy of BSN dedicated node services is based on the host configuration,
hard disk, and data usage of the cloud platform selected for the service, where the host
configuration and hard disk are prepaid, and the data usage fee is postpaid according to
the actual amount incurred; the pricing strategy of interchain services is postpaid
according to the actual number of cross-chain calls occurred; the permissioned services,
oracle services and interchain services provided by the BSN Testnet services are all free
of charge.

1.2.2 Permissionless Services

The Permissionless service is only applicable to the BSN international portal

2

Blockchain-based Service Network User Manual

(www.bsnbase.i0) and international public city nodes. Compared with the complexity
of the Permissioned service, Permissionless service has the virtue of simplicity. The
Permissionless service mainly provides developers who develop public chain DApps,
with unified access service covering numerous public chain nodes. Developers may
choose different plans on the BSN portal, and can simultaneously deploy DApps and
process transactions on all BSN adapted public chain nodes through the selected public
city nodes.

We offer a free plan and different premium plans. The free plan includes up to 2,000
requests per day. There are 3 types of premium plans, priced at $20, $100, and $500 per
month. The premium plans include up to 20,000 requests, 125,000 requests, and
750,000 requests, respectively, per day. All requests can be assigned to any public chain
freely.

Permissionless services only provide shared nodes and access environments and do not
involve any business of the public chain itself. The gas fees incurred in publishing and
running DApps on any public chain shall be borne by the developers themselves and
have nothing to do with BSN.

1.2.3 Interchain Services

The vision of BSN is to become the Internet of blockchains. In the future, millions of
DApps will be deployed and run on BSN. Both Permissioned and Permissionless
DApps will be very easy to call and they can interact with each other just like
applications currently do on the Internet. From this perspective, Interchain will become
a very core part of the BSN technical architecture.

The BSN's "Interchain Communications Hub" (ICH) is now commercially available
and integrated with Onchain's Poly Enterprise cross-chain solution. It supports cross-
chaining between permissioned chains and cross-chaining between permissioned
chains and the ETH Ropsten testnet and NEO testnet.

The demo version of ICH is also live on the BSN Testnet, integrating the cross-chain
solution based on the relay chain mechanism (Poly Enterprise developed by Onchain).
We welcome all developers to try it out and provide feedback and suggestions to us,
and we will continue to improve the cross-chain functionality.

The BSN's "Interchain Communications Hub" (ICH) integrates the cross-chain solution
based on the relay chain mechanism (Poly Enterprise developed by Onchain). It enables
cross-chain interoperability between standard permissioned chains, open permissioned
chains and public chains. We will continue to integrate more cross-chain protocols to
achieve the interoperability of all blockchains adapted to the BSN.

1.3 Terminologies

® Public city node (PCN): This is the core element of BSN but the “node” part
doesn’t refer to the blockchain nodes and BSN isn’t a blockchain. With BSN, each
PCN is a virtual data center used to allocate a portion of resources from the cloud
service or data center on which it was deployed. An entire blockchain operating
environment has been built within this resource pool and includes multiple

3

Blockchain-based Service Network User Manual

blockchain frameworks, shared peer nodes, CA management, authority chain, PCN
gateway, and PCN manager systems.

® DApp: This is a generic term for blockchain and distributed ledger technology
application.

® DApp Service or Service: This is a DApp that is already deployed and in use on
BSN that users can access with an invitation from the DApp publisher. The
invitation allows them to directly join and use the service.

® Service Publisher: This is the individual or enterprise who published and deployed
the DApp service on BSN and is responsible for granting access to users who apply
to participate in the service.

® Service Participant: This is a user that uses the BSN DApp service via a BSN
portal or the publisher’s system. Also, the user’s off-BSN system can connect to the
DApp service via the PCN gateway to execute transactions and query data.

® Off-BSN system: A business IT system developed and managed by a DApp service
publisher or a service participant outside BSN.

Blockchain-based Service Network User Manual

2 Release Notes

Release date

Version

Notes

2024/10/18

1.8.7

The BSN International's website www.bsnbase.io has taken
down Permissionless Chain dfuse-EOS.

2024/08/14

1.8.6

The BSN International's website www.bsnbase.io has taken
down Permissionless Chain klaytn and Findora.

2023/08/02

1.8.5

The BSN International's website www.bsnbase.io discontinue
support for the IRITA protocol in interchain services.

2023/06/19

1.8.4

The BSN International's website www.bsnbase.io has taken
down Permissionless Chain Casper.

2023/05/31

1.8.3

The BSN International's website www.bsnbase.io has taken
down Permissionless Chain Polkadot.

2023/05/29

1.8.2

The BSN International's website www.bsnbase.io has taken
down Permissionless Chain QOasis Network.

2022/04/24

1.8.1

Optimized DID Services functions and interfaces;
Added Unsubscribe function in Permissioned Services.

2022/01/23

1.8.0

Iterative optimization and technical optimization of the BSN
international website (www.bsnbase.io) to enhance user
experience;

Added the cross-chain function of Hyperledger Fabric V2.3.2
framework by Poly Enterprise and IRITA in the Interchain
Communications Hub;

Integrated Hyperledger Fabric V2.3.2 to the BSN Testnet;
Upgraded the version of Hyperledger Fabric from 2.2.0 to
2.3.2 in the Dedicated Node Services;

Integrated Klaytn public chain and provide external services
on the international website and international nodes;

Fixed bugs and enhanced the stability of the system.

2021/10/31

1.7.0

Iterative optimization and technical optimization of the BSN
international website (www.bsnbase.io) to enhance user
experience;

Added Hyperledger Fabric V2.3.2 framework to Permissioned
Services;

Added Configuration Upgrade function in the Dedicated Node
Services;

Upgraded IRITA in the Testnet to support Ethereum Ropsten
network and Chainlink oracle services;

Launched BSN DID Services to support credential issuance,
authentication and authorized access management in a unified
identity management system,;

Integrated Cypherium public chain and provide external
services on the international website and international nodes;
Fixed bugs and enhanced the stability of the system.

2021/07/31

1.6.0

Iterative optimization and technical optimization of the BSN

5

http://www.bsnbase.io/
http://www.bsnbase.io/
http://www.bsnbase.io/
http://www.bsnbase.io/
http://www.bsnbase.io/
http://www.bsnbase.io/

Blockchain-based Service Network User Manual

international website (www.bsnbase.io) to enhance user
experience.

Launched BSN dedicated node services based on Hyperledger
Fabric V2.2.0 and Hyperledger Besu V21.1.2 frameworks.
Optimized and improved Interchain Communications Hub's
protocols and service stability.

Updated the interface of the BSN Empowerment Platform to
provide the DApp service management APIs of Open
Permissioned Blockchains and BSN Testnet to BSN portals.
Fixed some bugs and enhanced the stability of the system.

2021/05/31

1.5.1

Launched IDE Services, supports frameworks including
Hyperledger Fabric, FISCO BCOS, Ethereum, Nervos and
Algorand.

2021/04/30

1.5.0

Iterative optimization and technical optimization of the BSN
international website (www.bsnbase.io) to enhance user
experience.

Launched BSN dedicated node services based on ConsenSys
Quorum framework.

Launched the commercial service of Interchain
Communications Hub based on IRITA.

Fixed some bugs and enhanced the stability of the system.

2021/03/19

1.4.1

Added public chain main net and test net nodes along with
native API access services. Including: Casper, Findora and
Near.

2021/01/31

1.4.0

Iterative optimization and technical optimization of the BSN
international website (www.bsnbase.io) to enhance user
experience.

Launched the commercial service of Interchain
Communications Hub based on Poly Enterprise.

Fixed some bugs and enhanced the stability of the system.

2020/11/30

1.3.1

Added public chain main net and test net nodes along with
native API access services. Including: BTY, Oasis and
Polkadot.

2020/10/31

1.3.0

Optimized the BSN International website (www.bsnbase.i0)
to improve user experience.

Launched BSN Permissioned Blockchain Testnet, providing
developers with a free testing environment supporting:
Hyperledger Fabric R1, FISCO BCOS K1 DApp Services
publication

-Interchain testing services

Launched the BSN Interchain Communications Hub on BSN
Testnet based on Poly Enterprise and IRITA.

Added the BSN empowerment platform APIs to allow third-
party portals to access BSN Permissionless Services.

Added the TPD (Transactions Per Day) limit control function
in the Permissionless Services

Fixed some bugs and enhances the stability of the system.

6

Blockchain-based Service Network User Manual

2020/9/24

1.2.1

Updated the BSN Global website address to
https://www.bsnbase.io0.

Added public chain main net and test net nodes along with
native API access services. Including: Algorand, ShareRing
and Solana.

Added Enable Key function in the public chain project.

2020/8/10

1.2.0

Redesigned the user interface toprovide better navigation and
user experience.

Added public chain main net and test net nodes along with
native API access services. Including: Nervos, Neo, ETH,
Tezos, EOS, IRISnet, etc.

Added commercial functionality for Hyperledger Fabric and
FISCO BCOS frameworks.

Updated FISCO BCOS framework to support SECP256 K1
encryption algorithm.

Added the following functionality to Permissioned services:
recurring payment mechanism for service charge and data
usage charge, service configuration upgrade.

Added Permissionless service plan purchase and upgrade.
Added "My Account" in User Center to make it easier for users
to update credit card information, check bills, pay bills and
download invoices (we process all credit card activities
directly on Stripe).

Added Online Help Manual to provide developers and portal
users easy-to-follow instructions.

Added PCN gateway SDK and all examples on Github:
https://github.com/bsnda.

Fixed a few bugs to enhance the stability of the system.

2020/4/25

The BSN global portal has officially launched. Beta testing
will be held from April 25%, 2020 to June 25, 2020.
Developers can deploy one three-peer DApp (service) at up to
three public city nodes (PCNs) free of charge during beta
testing.

There is a total of 10 available PCNs during beta testing. They
are deployed on AWS, Microsoft Azure, Google Cloud, China
Mobile Cloud, and Huawei Cloud.

During beta testing, there are two frameworks to choose from,
Hyperledger Fabric V1.4.3 or FISCO BCOS V2.4.0.
Developers can choose “Key Trust Mode” or “Public-Key
Upload Mode” to manage their service users’ certificates and
keys.

Basic information and chaincode/smart contracts in deployed
services can be modified anytime. PCNs, however, cannot be
changed once chosen.

Published services are private by default. Developers will need
to apply for a public listing. After approval, they will be
available on the App Store.

7

https://github.com/bsnda

Blockchain-based Service Network User Manual

e Developers will need to grant permissions to other users to
participate in their services. The participants then follow the
services’ instructions to generate service access keys and user
transaction keys by using either “Key Trust Mode” or “Public-
Key Upload Mode”.

e The PCN gateway provides a set of user registration APIs for
deployed services. Developers can register service users via
these APIs from their off-BSN systems. Developers do not
need to log in to the BSN global portal.

e The PCN gateway APIs support “Key Trust Mode” for both
Fabric and FISCO BCOS. “Public Key Upload Mode” is only
supported for Fabric.

e For more info on gateway APIs, please refer to the developer’s
manual.

Blockchain-based Service Network User Manual

3 Quick Start

3.1 Permissioned Blockchain

Select the

Public Key U pload Mode

, test data and
ure data to BSN)

u

zip file contains g
rtificates only, Dapp
pa

Service publisher

Create aNew
Permissioned DApp

Define func
roles

deploy the serv

Select Certificate Mode

Pay bills, submit for
approval and publishing

Participat

the serv

Participation successful
Publisher approval

ity

Key Trust mode

Part
published Service

ipate in my

Key Trust Mode(Apply to

Blockchain-based Service Network User Manual

Permissioned DApp Service publishers can create DApp services in the BSN portal. To
create the service, it is necessary to upload the smart contract/chaincode package, define
the service functions and roles, select the public city nodes and select the participant
certificate mode (including Key Trust mode and Uploaded Public Key mode). After
that, publishers pay the bills and submit the service deployment request to the network
operator for approval and publishing.

After the successful publication of the service, publishers can participate in their service
or invite other users to participate in the service. To participate in the service,
participants should select designated roles and the access public city node, then generate
the certificates according to the certificate mode set by publishers. Participation will be
successful after being approved by service publishers.

Once successfully participating in the service, participants can download the certificate,

and use the certificate and service access configuration parameters to access the
chaincodes/smart contracts through the gateway API.

3.2 Permissionless Blockchain

b

Permissionless blockchain visitor

Select A Public City Node

l Select a Plan

Free Plan

Basic/Professional/
Enterprise/Custom Plan

Create projects

Obtain the project ID,
project key and access
address

Connect to the PCN
gateway to access the
selected public chain
nodes

10

Blockchain-based Service Network User Manual

Permissionless services allow visitors to select public city nodes and plans to participate
in a service. There are 2 types of plans, the free plan, and premium plans. Visitors can
choose plans according to their business requirements. To connect to the public chain
nodes, users can create projects to obtain project IDs, project keys, and access addresses
to access the public chain services.

3.3 Documentation

The direct users of the BSN portal are developers. As the environment and tools of the
blockchain application's development, deployment, and operation, BSN is relatively
complex in its overall operation. We strongly recommend that all developers start by
examining the documentation and examples so that they will be able to master the use
of BSN within a day or two.

For your convenience, all examples we've provided are available on Github. We hope
that developers with serious interest can help us optimize and enrich the examples so
that other developers are able to adapt and learn about blockchain development.
Developers who share their samples, will receive small gifts and be invited to BSN's
internal technical seminar.

For links to all documents and examples, please visit Chapter 13. Online
Documentation.

11

Blockchain-based Service Network User Manual

4 Registration and Activation

BSN requires its users to register and confirm their registration before they can access
the network to carry out services and actions across the network. As a first-time user,
follow these steps to register:

4.1 Registration

1. Click here to access the website at www.bsnbase.io.

2. With the blockchain-based service network, you can access the system either as an
Individual or a Corporate entity.

3. To register as an Individual, enter or select the following:

e Username — Enter a preferred username

e Nationality — Click the dropdown to select your country from the list of
countries

e Name — Enter your real name, different from the username
e Mobile Number (Optional) — Enter your mobile number
¢ Email address — Enter an email address you have access to

e Brief description of your programming experience (Optional) — If you have
some experience in programming, we would love to hear about it

e Check the I have read and agree to Terms of User and Privacy Policy box

e Click Confirm to finish the registration.

EE Blockchain-based
Service Network

Create an Account

Username *

© Individual Corporate
The username consists of 6-25 characters, including letrers and numbers.

Name *
China

Email Address * Mobile Number

Brief description of your Programming Experience

I have read and agreed to Terms of Use and Privacy Palicy

Go Back

12

https://www.bsnbase.io/

Blockchain-based Service Network User Manual

4. To register as a Corporate entity, enter or select the following:

Username — Enter a preferred username

Nationality — Click the dropdown to select your country from the list of
countries

Enterprise Name — Enter the legal name of your corporate body or company
name

Detailed Address — Enter a verifiable address of the company location
Contact Name — Enter a contact name that represents the company
Mobile Number (Optional) — Enter your corporate mobile number
Email address — Enter a corporate email address that you have access to

Brief description of your programming experience (Optional) —If you have
some experience in programming, we would love to hear about it

Check the I have read and agree to Terms of User and Privacy Policy box

Click Confirm to finish the registration.

Create an Account

Username *

Individual @ Corporate
The username consists of 8-25 characters, including letters and numbers.

Enrerprise name *
China

Detailed Adress *

Contact Name *

Mobile Number

Email Address *

Brief description of your Programming Experience

have read and agreed to Terms of Use and Privacy Palic

13

Blockchain-based Service Network User Manual

5. A confirmation dialog box will be displayed confirming your registration. Click
Go to Dashboard.

v/

Successfully Submitted

Your application has been submitted and a
confirmation email has been sent to you, please
click the link in the email to proceed.

| Go to Dashboard |

6. You will receive an email from BSN requesting that you confirm your registration.

7. Click on the link in the email to confirm your registration and enter your Password
and Password Confirmation.

8. Click Confirm when done to return you to the login page.

4.2 Login

After you have successfully registered your account on BSN, you can login by
following these steps:

1. Click on the Login link to access the login page.
2. On the login page, enter the Username/Email, Password, and the Captcha Code.
3. Click Sign In to access the Home page.

14

https://bsnbase.io/g/main/Login/Logins

Blockchain-based Service Network User Manual

E m Blockchain-based
ervice Network

username/email address

username/email address

Password Forgot Password??

Password

Captcha

Captcha ~PP '6‘-.1-' BW

Don't have an account? Create Account

4.3 Forgot Password

If at any time you have forgotten your password, you can follow these steps to retrieve
it:

1. On the Login page, click the Forgot Password to open the forgot password page.
2. On the page, enter the correct account or email.

In the verification code, enter the displayed code. If you wish to generate another
code, click on the code to generate another.

Forgot Password
Fillin the correct Account or Email

carlos_lastres@gmail.com

Verification Code

“BxFQuX

Go back

Blockchain-based Service Network User Manual

4. Click Next to view the Authentication page.

5. On the Authentication page, click the Send button to get verification code. This
will generate a code that will be sent to your registered email address.

EE Blockchain-based
Service Network

Forgot Password

For the security of your account, you need to verify your identity

Verification Code

Go Back

6. Enter the code that was received in your mailbox and click Next.

7. On the reset login password page, enter your New password and Confirm
password.

8. Click Confirm to change your password.

16

Blockchain-based Service Network User Manual

Em Blockchain-based
Service Network

Set your new login password

Choose your account

bi***n5

New Password

Password

Confirm the new password

Password

Go Back

5 Permissioned Services

5.1 Overview

The Permissioned service is one of the core services provided by BSN. Its goal is to
make it easy for developers to publish decentralized applications (DApps) based on the
framework of the permissioned blockchain on their selected public city nodes.
Compared with the permissionless blockchain DApp, the permissioned blockchain
DApp is more flexible in terms of architecture design, operation efficiency, and smart
contract programming. It also has a larger space for innovation. However, from the
perspective of development, because the developers need to build their underlying
environments, and the environment for the public chain is readily available, the
development, operation and maintenance of the permissioned chain DApp are relatively
difficult. The developer's off-BSN system can access to DApp for data processing
through the BSN public city node gateway.

Although BSN has greatly reduced the difficulty of permissioned blockchain DApp
development, developers still need to have an in-depth understanding of the following
three aspects which will be explained in detail in the following chapters.

1. Keys and Certificates Mechanism: the blockchain application itself is based on
encryption algorithm technology, so the requirements of the keys and certificates
are very high.

2. DApp services publication and participation: To build a permissioned blockchain
DApp, the developer should firstly set up the chain and deploy the smart contracts.
This part is entirely carried out on the BSN global portal (www.bsnbase.io),
including the operations of smart contract upload, certificate mode selection, role's
permissions setting, peer node configuration, public city node location, etc. Finally,

17

Blockchain-based Service Network User Manual

developers need to upload or download keys to facilitate the access from off-BSN
system.

3. Off-BSN system access: This part contains a detailed description of the access
parameter configuration, SDK usage, and the description of public city node
gateway APIs to which the off-BSN systems connect. The API section includes all
APIs of the currently permissioned blockchain frameworks that BSN has adapted.

5.2 BSN Keys and Certificates Mechanism

5.2.1 BSN Keys and Certificates Mechanism

Once a publisher deploys a permissioned DApp on BSN, the off-BSN systems of all
participants (including the publisher) connects to the DApp via the PCN gateways to
execute and record transactions based on the DApp’s smart contracts. During this
process, the participants need two key pairs to complete all steps: the DApp Access Key
Pair and User Transaction Key Pair. When publishing and deploying a DApp on BSN,
its publisher can choose from two modes to manage the DApp’s keys and certificates:
Key Trust Mode and Public Key Upload Mode. The key trust mode means that the two
key pairs and related certificates will be generated and hosted by BSN when a
participant joins the DApp. The participant can then download the private keys from
the BSN portal, and use them to access BSN and sign transactions sent to the DApp
from the off-BSN systems. The public key upload mode means that the two key pairs
will be generated and stored locally on the participant’s off-BSN system, and the public
key is uploaded via the BSN portal or PCN gateway API, to BSN to generate the
certificates. Once a mode is selected for the DApp, it cannot be changed. We strongly
suggest all developers use the public key upload mode which is much more flexible and
secure.

1. DApp Access Key Pair based on Key Trust Mode: DApp access key pair 1s used
to generate the certificate to access the PCN gateway. If the DApp is on Key Trust
Mode, the key pair can be generated on the BSN portal, and the private key can be
downloaded. Please refer to the BSN Help Manual’s service participation section.

2. User Transaction Key Pair based on Key Trust Mode: User transaction key pair is
used to verify the requests and transactions sent to the DApp. If the DApp is on
Key Trust mode, the key pair can be generated via the PCN gateway APIs by
executing requests from the off-BSN systems. If the off-BSN systems have sub-
users, it can even generate different key pairs for different sub-users. Refer to the
API sections in this document for Hyperledger Fabric and FISCO BCOS
frameworks to see how to generate the key pairs and use them to verify the
transactions.

3. DApp Access Key Pair based on Public Key Upload Mode: In this mode, the DApp
access key pair is generated and stored locally. The participant must upload the
public key to BSN via the BSN portal to generate the access certificate to the PCN
gateway. Please refer to section 5.2.2 below to see how to generate the key pair
locally. Please refer to the “Public Key Upload” section of this document to learn
how to upload the public key to BSN via the portal.

4. User Transaction Key Pair based on Public Key Upload Mode: In this mode, the

18

Blockchain-based Service Network User Manual

user transaction key pair is also generated and stored locally. Instead of using the
BSN portal, the user transaction public key (one of the pair) is sent and registered
on BSN via the PCN gateway certificate registration APIL. If the off-BSN systems
have sub-users, they can also upload different public keys to generate different
transaction certificates for different sub-users by using the API. Please refer to
section 5.2.2 or the instructions inside the gateway SDK package about generating
the key pair locally. Refer to the API sections in this document for registering the
certificate via gateway APIs.

Please click the link to download the PCN Gateway SDK Package:

https://github.com/BSNDA/PCNGateway-Go-SDK

https://github.com/BSNDA/PCNGateway-Java-SDK

https://github.com/BSNDA/PCNGateway-PY-SDK

https://github.com/BSNDA/PCNGateway-CSharp-SDK

Currently, both permissioned frameworks Hyperledger Fabric and FISCO BCOS
DApps support both Key Trust Mode and Public Key Upload Mode.
5.2.2 Locally generate the DApp access key pair

If the DApp service you participate in adopts Public Key Upload Mode for its
application access key, you will need to generate the pair of public and private keys on
the local client then save the private key locally and upload the public key to BSN via
the portal.

It is recommended to use the latest version of OpenSSL to generate the keys.
Please use the prime256v1 cryptographic algorithm for Hyperledger Fabric
andsecp256k1 for FISCO BCOS. The steps are as follows:

1. Preparation: Download the latest version of OpenSSL
from https://www.openssl.org/source/ and create a data.txt file in which some test
phrases are entered, such as - Hello world.

2. Input "OpenSSL" in the terminal to show the open SSL command line.
OpenSSL>

3. Input the command - "ecparam -name prime256v1 -genkey -out key.pem" to
generate a private key file key.pem.

OpenSSL> ecparam -name prime256v1 -genkey -out key.pem

4. Input the command - "ec -in key.pem -pubout -out pub.pem" to generate a public
key file pub.pem with the private key in the key.pem file.

OpenSSL> ec -in key.pem -pubout -out pub.pem
read EC key
writing EC key

19

https://github.com/BSNDA/PCNGateway-Go-SDK
https://github.com/BSNDA/PCNGateway-Java-SDK
https://github.com/BSNDA/PCNGateway-PY-SDK
https://www.openssl.org/source/

Blockchain-based Service Network User Manual

5.

Input the command - "dgst -sha256 -sign key.pem -out signature.bin data.txt" to
sign the data.txt file with the private key in the key.pem file to generate the
signature file: signature.bin.

OpenSSL> dgst -sha256 -sign key.pem -out signature.bin data.txt

Input the command - "dgst -verify pub.pem -sha256 -signature signature.bin
data.txt". Use the public key in the pub.pem file to sign and verify the data.txt and
signature.bin files.

OpenSSL> dgst -verify pub.pem -sha256 -signature signature.bin data.txt
Verified OK

If "Verified OK" is displayed, input the command - "base64 -in signature.bin -out
signature64.txt" to convert the signature file signature.bin to base64 encoded
signature64.txt.

OpenSSL> base64 -in signature.bin -out signature64.txt

Input the command - "pkes8 -topk8 -inform PEM -in key.pem -outform PEM -
nocrypt -out keypkcs8.pem" to convert the private key in the key.pem file to pkcs8
format.

OpenSSL> pkcs8 -topk8 -inform PEM -in key.pem -outform PEM -nocrypt -out
keypkes8.pem

Save the keypkcs8.pem file locally and copy all the contents of pub.pem, data.txt,
and signature64.txt to the public key, test data, and signature data text boxes
respectively on the Public Key Upload Mode page to verify the public key and
submit it to BSN.

5.3 DApp Services Publication and Participation

5.3.1 Overview

Permissioned DApp services refer to blockchain and DLT applications that are already
deployed and operational on BSN. Users can use a BSN portal or the publisher’s
business system to apply to and join the service. Published services are private and
cannot be browsed or searched by users through the BSN portal. DApp service
participation must be initialized by the publishers’ invitation links.

5.3.2 DApp Services Publication
5.3.2.1 Create a New DApp Service

To create a new DApp service, follow these steps

1.

In the BSN menu, click the Permissioned Services dropdown, in the list, click
Published Services to open the Published Services page.

20

Blockchain-based Service Network User Manual

Fuplisnea >ervices

Permissionless Services

EE Permissioned Services Service Name

TraceabilityService
Published Services 1.0.0 06/10/2020

Participated Services
1 items found. disnlav 1 to 1

2. On the published services page, click the Create Service button.
3. In the Basic Information section enter or select the following:

e Service Name — Enter an applicable name for the service to be provided
e Industry — In the dropdown select from the various available service types

e Version — The default version 1.0.0 is entered automatically. Unless necessary,
leave it as is.

¢ Framework — Select from Fabric-1.4.3-secp256r1, FISCO-2.4-secp256k1 or
Fabric-2.3.2-secp256r1

e Service Logo — Click on the icon to locate the image on your PC. Note that
the image must be in png/jpg/jpeg format and should be exactly 160 x 160
pixels.

Basic Information

Supply Chain Management

1.00 Framework Fabric-1.4.3-secp256r1 e

e Service Introduction — Enter a brief description of the service

e Service Description — Enter a detailed description of the service including text
and pictures where applicable

4. Documents — Documents can be added so that other users can easily understand
your product. Click Add to display the Add Document dialog box. Click Select to
locate the document on your PC.

Documents & Resources @

+Add

Enter a Name, and choose a Type for the document. Click Confirm to add the

21

Blockchain-based Service Network User Manual

document.

5. Inthe Contact Information section, the login details of the user are automatically
populated, including the Contacts and Email. If necessary, you can add a
telephone number.

Contact Information

Contact Name | abce Mobile Numbe

123@hotmail.com

* publisher cannot publish company services in the name of an individual. If you publish company services, please register an account in the name of the company. Contact information must be true and valid

6. Click Next to continue.
5.3.2.2 Upload Chaincode Package

In the Upload Chaincode Package section, you can add your chaincode/smart contract
package or use the preset chaincodes available in the system.

Upload Chaincode Package @ + Add Chaincode Package Use Preset Chaincode Package

Chaincode Name Version Chaincode Package Action

1. To Add Chaincode Package, click on the button to display the Add Chaincode
Package where you enter or select the following:

e Chaincode Name — Enter a name for the chaincode
e Version — Enter the chaincode version

e Chaincode Language — Select from one the languages (Java, Golang or
NodelS)

e Initparam — enter the initialization parameters and if multiple, separate it with
commas

e Chaincode Package — Click on the icon to select the package file from the

PC. Package files are to be in the .zip file format and the file name should only
contain letters and numbers or underscores

22

Blockchain-based Service Network User Manual

Add Chaincode Package @ X

Chaincode Name
Version 1.0.0
Chaincode Language JAVA
Init Param

Chaincode Package

Confirm Go Back

2. To Use Preset Chaincode Package, click on the button to display the Select preset
chaincode package option. In the list of packages, select one of the listed packages
and click Confirm to add it.

Select preset chaincode package X
Chaincode Name Version Download
bsnBaseCCEN 1.0.0 E 2

1 items found, display 1to 1 n

5.3.2.3 Define Service Functions and Roles

1. By selecting a Preset Chaincode Package, a set of automatic service functions are
added to the service and each of the functions can be Edited or Deleted.

23

Blockchain-based Service Network User Manual

Define Service Functions @ -
+ Add Functions

2. If you wish to add more functions, click the Add Functions button to display the
dialog box. In it, enter or select the following:

¢ Function Name — Enter a name for the function

¢ Chaincode Name — Select from the list of chain codes

e Chaincode FUNC type — Choose from invoke, query or event
e Chaincode FUNC — Enter a description of the function

e Superior Functions — Select a function from the list of functions in the system

Add Service Functions

Function Name

Chaincode Name bsnBaseCCEN

Chaincode FUNC Type @ invoke query event

Chaincode FUNC

Superior Functions

Click Confirm to add it to the functions.

4. When the Use Preset Chaincode package is selected, a system administrator role
is automatically created with full access to the published service. To create another
role, Click Add Roles to display the Add Roles function and enter or select the
following:

e Role Name — Enter a role name

e Description — Enter a description for the role

e Function Permissions —Choose one or more from the DApp’s existing
functions, for example: SaveData, UpdateData, RemoveData, QueryData,
and Query historical data from the Preset Chaincode Package.

24

Blockchain-based Service Network User Manual

Add Roles

Role Name @

Description @

* Function Permissions @
SaveData

UpdateData
RemoveData
QueryData

Query historical data

5. When done, click Confirm to add the role.
5.3.2.4 Select the Public City Nodes to deploy the service

Public city nodes are used by permissioned DApp publishers to deploy DApp’s peers
and smart contracts. Publishers can deploy all peers into one or more PCNss, so that all
peers connect together to form the DApp. We strongly suggest not to deploy all peers
onto one single PCN for data safety reasons. To add a public city node, follow these
steps

1. Inthe Select the City Nodes to deploy the service section, click Add City Nodes.

Select the city nodes to deploy the service @
Add City Nodes

Capacity Prics Data Usage

City Nodes ™S Capacity(GB) Peers TPS Price (USD/Month/Peer) (USD/Month/Peer) (USD/GE)

Action

2. Inthe Add City Nodes window, enter or select:
e Name — Enter a name for the city code
e Capacity (GB) — 10 GB is allocated by default
e Available TPS — 10 is allocated by default

¢ Cloud Provider — All carriers are listed, however, if you prefer a particular
carrier, click the dropdown and select that carrier

3. Click Search to list cloud providers.

25

Blockchain-based Service Network User Manual

4. In the list of carriers, select more than one carrier for redundancy purposes. When
done, click Confirm.

Add City Nodes
10TPS Capacity(GB 106
Feset
TPS Pri i i
rice Capacity Price Data Price

Name Available Peers (USD/Month/Pe (USD/Month/Pe (USD/GB) Cloud Provider Address

er) er)
peerl.nodetestbsnb... 13 6.73 0 0 AWS 123213
orgc 2 6.73 3.08 87.21 ecloud test
orgh 1 6.73 3.08 0.1 ecloud Beijing
js1 5 673 3.08 019 tencent Beijing
orga 2 6.73 3.08 2.34 ecloud Beijing

19 items found, display 1to 5 n 2 3 4 5

The city nodes that have enough resources according to the TPS and storage
configuration are displayed alongside their costs. The resource costs are different for
each public city node.

5.3.2.5 Select Certificate Mode

There are two certificate modes, Key Trust Mode and Public Key Upload Mode. The
key trust mode certificates are generated and hosted by BSN while the public key
upload mode certificates are generated by developers, and the private key is stored
locally and the public key is uploaded to BSN. It is recommended that all developers
use the Public Key Upload Mode.

1. To use the certificate mode, in the Certificate Mode section, click either Key
Trust Mode or Public Key Upload Mode.

Certificate Mode @

Participant's Certificate Mode: @ Key Trust Mode Public Key Upload Mode

2. Click Next to continue.
5.3.2.6 Pay bills and submit for approval

In the bill detail section, the resource usage fees from the added city nodes are displayed
alongside a monthly total payment fee. If the bill is satisfactory, click the Confirm
button to proceed and make the payment. However, if you need to make changes to the
bill, click Back and make changes in the Add City Nodes section.

26

Blockchain-based Service Network User Manual

Billing Summary

TPS Price Capacity Price
City Nodes s Capacity(GE) Peers Data Usage (USD/GE))

Total Amount: © 112,59 USD Per Month 1228.53 USD Per Year

Once the payment is successfully made, you will receive an email in your mailbox
informing you that your BSN service has been submitted successfully and will be
reviewed. You will be informed via email when the reviewed has finished.

Once the service has been approved, the service will be seen in the Published Services
section.

Service Name Framewor) K Participants Status Payment Status Action

5.3.3 DApp Services Management

After the request for a service approval has been given, it will be listed in the
Permissioned Services - Published Services section. For each listed service some
Actions can be carried out. This includes Invite Participants, Edit Basic Information,
Service Upgrade, Configuration Upgrade and Details.

5.3.3.1 Invite Participants

After the service has been approved and the service is in use, you can invite other users
of the blockchain network to participate in your service. To invite participants, follow
these steps:

1. Inthe BSN menu, click the Permissioned Services dropdown and click Published
Services to display the list of published services.

2. In the Action column, select the Invite Participants link to display the details to
send to participants who intend to join the service.

Click Copy to copy the link details. This can be emailed to the participants who login
with their BSN credentials to join or register with BSN first to use the service.

27

Blockchain-based Service Network User Manual

Invite Participants

Please copy the following URL and send it by SMS or Email to the users you want to invite
https://global.bsnbase.com/g/home/PermissionedServices/ParticipatedServices/ServicesDetail?
types=8202DA0SABSE19006CEC8C1934BIFOBF&appCode=5C12A75B67A30BI6B3402C968498CB57F709AE3AR7C5DT0DI550385F9D24

A4ABRappld=DBOFB4771413A9E10A87C5EA40A7FAD3&auditState=DEO150CDBA0B364042C9DF1 C1E1306DD&appjoinAuditld=5C12A75

B67A30B96B3402C968498CB57F709AE3A87C5D70D9550385F3D24A4A8

5.3.3.2 Edit Basic Information

After the service has been running and participants have joined, the publisher can edit
basic information regarding the service including Service Name, Industry,
Framework, Version, Service Logo, Documents, and Contact Information. To edit
the basic information, follow these steps:

1. In the list of published services, locate the service to be edited. In the Action
column of the service, select Edit Basic Information to display the editing page.

2. Add, edit or remove the basic detail of the service and click Save to store changes.
If no changes were made click Back to return to the Published Services page.

5.3.3.3 Service Upgrade

After a service has been published, the publisher can use the Service Upgrade option
to update the smart contracts and other functions. It will be reviewed again before it can
be used. To edit the Service Upgrade, follow these steps:

1. In the list of published services, locate the service to be edited. In the Action
column of the service, choose Service Upgrade.

2. In the Basic Information page, change the Version Number, which is mandatory
and/or any other details in the Basic Information page. Click Next to upload the
new smart contracts and set functions and roles as described before.

When done, click Confirm

5.3.3.4 Configuration Upgrade

In order to join the DApp services, the publisher should send out invitation links to the
potential participant. The potential participant can then click on the link to the services'
main page and apply for the service.

To upgrade the configuration, follow these steps:

1. Go to Published Services and select the enabled service on the list. Click
configuration upgrade to enter the configuration upgrade list page as below:

28

Blockchain-based Service Network User Manual

DApp number Submit Time Amount{USD) Status Action

2. Click Add to create a configuration upgrade application form, and then click Add
city nodes to add new city nodes:

Published Services Create A New Service

Billing Summary

. _ ! TPS Price Capacity Price
City Nodes TPS Capacity(GB) Peers RatalpuE((SDIGE) (USD/Month/Peer) (USD/Month/Peer)
Sydney 1 021 29.48 0.10

Singapore 10 10 1 0.19 18.34 0.08

Total Amount © 78.55 USD Per Month 860.56 USD Per Year

Note

Read and Agree to Terms of Service the BSN service publishing agreement.

3. Click Submit to submit the configuration upgrade application. When submitting,
the system will prompt the publisher to pay the corresponding configuration
upgrade fee. After the publisher confirms, the system generates the configuration
upgrade bill and deducts money from the user's credit card. Whether the payment
is successfully charged, or not, the configuration upgrade application will go
through the review process. If the payment is successfully charged and the
application is approved, the system will conduct a configuration upgrade process
and complete the upgrade; if the charge fails, the bill will be kept for 72 hours and
then expires. If the publisher still wants to upgrade the configuration, he/she needs
to apply again.

Note: The fee paid when configuring the upgrade is the upgrade fee, which makes up
the difference in the remaining payment period between the pre-upgrade configuration
and the post-upgrade configuration of the billing cycle. After the upgrade is successful,
future charges will be made according to the new configuration from the next period.

5.3.3.5 Details

The View option allows the publisher to view all the details of the published service
including Basic Information, Chaincode and Deployment, Roles, Review Records,
Operating Status, Comments/Inquiries, and Historical Version. To view these
options, follow these steps:

1. In the list of published services, locate the service to be edited. In the Action

29

Blockchain-based Service Network User Manual

column of the service, click Details to display the view page tabs.

2. In the Basic Information tab, you can see all the details of the service that has
been deployed including the Service Name, Industry, Version, Framework,
Service Logo, Service Introduction, Service Description, Documents, and
Contact Information.

3. In the Chaincode and Deployment tab, the information that can be viewed
includes the Chaincode Package, Service Functions, and City Nodes.

4. In the Roles tab, the roles and their related functions are listed. To View a role,
click on the view link for that role name.

5. Inthe Review Records tab, you will see all the requested approval and their status
as well as time logs.

6. The Operating Status tab shows more information about the published service
than any other tab. It shows the parameters of City Nodes, number of transactions,
Peer Information, Chaincodes, Blocks, and Logs of how the activities took place.

7. The Comments/Inquiries tab shows the comments made on the published service
that can be viewed by the publisher.

8. The Historical Version tab shows the history of the service including the Service
Name, Version, Industry, Service Introduction, and Action.

5.3.3.6 Service Unsubscribe

Users can unsubscribe published services. Click Unsubscribe in the published service
list.

!

Are you sure you want to unsubscribe from the project “testsubs"?

After unsubscribing, the payment will not be refunded, and the data on the chain will be cleared and irrecoverable. Are you sure
you want to unsubscribe?

=

For users whose service resources are paid monthly, no refund will be generated when
they unsubscribe; for users whose service resources are paid annually, refunds will be
made at the point of time from the next month to the end of the billing cycle, and the
refundable month will be cancelled when the refund is made, and the refund will be
tallied according to the actual remaining months.

5.3.4 DApp Services Participation

In order to join the DApp service, the publisher should send out invitation links to the
potential participant. The potential participant can then click on the link to the services'
main page and apply for the service.

30

Blockchain-based Service Network User Manual

5.3.4.1 Apply for a Service

To apply for a service, follow these steps:

1.
2.

Click the link that was shared. This will take you to the service information page.

In the service header, click Apply for the Service.

Apply for the Service

5.3.4.2 Select Roles and City Nodes
1.

Choosea

In the list of roles, select a role you want to use. You can click the View link in
each of the roles to see more details about the role. You can select more than one
role.

Service Role

Name of Role Description Action

In the Public City nodes, click Add city nodes to display the Public City Nodes
the DApp is deployed on. You can select more than one node. The selected nodes’
gateways are where the off-BSN systems connect to. Please select the public city
node that is closest to you.

31

Blockchain-based Service Network User Manual

Add City Nodes

Name Address Cloud Provider
Sydney Sydney, Commonwealth of Australia AWS
Singapore Singapore Aliyun
Paris Paris,French AWS
3 items found, display 1to 3 n

Click Confirm to view the nodes that were selected.

5.3.4.3 Apply Certificate Mode

Depending on the settings of the service publisher, there are two certificate modes for
service participation: Key Trust Mode and Public Key Upload Mode.

Key Trust Mode: Participants can select existing certificates on the city node or apply
for a new certificate.

Set Password for The New Certificate Read Instruction

Password

Confirm the new password

The certificate password cannot be recovered. Please keep it properly!

Public Key Upload Mode: Participants should upload the public key, test data and
signature data. The generation of public and private keys can be viewed by clicking
Read Instruction.

32

Blockchain-based Service Network User Manual

Upload A New Certificate Read Instruction

Public key

Enter test data

Signature data

5.3.4.4 Submit for approval

Click Confirm to join the service pending the publisher’s approval.

Participated Services

Participated Services(1)

Service Name Version Platform Type Publisher Participation Time Status Action

TraceabilityService 1.0.0 Fabric-1.4.3-secp256r1 retailer — To be reviewad

5.3.4.5 Approve the Request

As the publisher of a service, in the Participation Management list, the publisher can
approve, deny or disable a participant from using the service. To perform any of these
actions, follow these steps:

1. In the Participation Management section, locate the participant to review.

Service Participation Management

Participants Sarvice Name Varsion Application Time Status Action

2. For the participant to be reviewed, click the Review link in the Action column to
view the participant details. In the Review Result section select either Approved
or Not Approved and write a comment in the Comment box to give details.

33

Blockchain-based Service Network User Manual

3. Click Confirm or Back to return to the participant's list.

Approval Information

ApprovalResult: @ Approvec Failed to Approve

Approval comments:

Submit for Approval

4. If the participant is approved, a message will prompt showing that the service
participation approval was successful.

5. After the approval has been given, the participant can view the service from their
Participated Services page as well as add more city nodes.

5.3.4.6 Download and renew a certificate

The BSN development team intends to build BSN into a most secure blockchain
infrastructure network. The certificate and key mechanisms of BSN are complex. There
are two kinds of key pairs used in generating certificates: DApp Access Key Pair and
User Transaction Key Pair. For each, there are two modes, the Key Trust Mode and the
Public Key Upload Mode. To work with certificates, follow these steps:

Key Trust Mode:

1. In the My Certificates menu, click Key Trust Mode. The certificate page will be
displayed.

ey Trust Mode Public Key Upload Mode

Service Name TID AppCode Certificates. City Nodes Password Action

TraceabilityService 452020d9bb168477080d9ee5e02a4 1 app0003202006101817263357932 USER0003202006101723379147576. Paris ab***23 e

(4]

2. To download the certificate, click the
certificate password.

icon. You will be required to enter the

Fill in your certificate password

Password

34

Blockchain-based Service Network User Manual

3. To update the certificate, click the Certificate update link. You will be requested
to set a password for the certificate and confirm the password.

Set Password for The New Certificate X

Password
Confirm Password

The certificate password cannot be recovered. Please keep it properly!

4. Click Confirm to update the certificate.
Public Key Upload Mode:

1. Inthe My Certificates menu, click Public Key Upload Mode. The certificate page
will be displayed.

Key Trust Mode Public Key Upload Mode
Service Name TID AppCode Certificates City Nodes Action
FlyingUnicorn d7749830967349319454¢b3a80757693 app0003202007061026339883125 USER0003202006082324013815938_1 Sydney Certificate update

2. To update the certificate, the public key, test data and signature data need to be re-
uploaded, and the update can only be completed after the test passes.

Tips X

Public key

Enter test data

Signature data

View public/private key generation instructions Read Instruction

B 3 3

35

Blockchain-based Service Network User Manual

3. The user only needs to upload the public key in the Public Key Upload Mode. The
private key is kept locally by the user, so there is no need to download the certificate.

5.3.4.7 Configuration parameters for service access

To view and download the configuration parameters, follow these steps:

1. Inthe Permissioned Services menu, click Participated Services.

2. Inthe list of services, click the Detail option in the Action column for the service.

B S — -
Settings

3. Click the dropdown beside the configuration parameters for service access to
view its configuration.

Configuration parameters for service access & Download the configuration parameters

UserCode USER0003202106251751437399976
APPCode app0003202107141032301483410

Channel name app0003202107141032301483410

‘Chaincode Name Chaincode deployment name Chaincode address Function Name FUNC

bsnBaseCCEN cc_app0003202107141032301483... Query historical data getHistory

4. To download the parameters for service access, click Download the
configuration parameters to begin the download.

5.4 Off-BSN System Access Guide

5.4.1 Overview

Blockchain-based Service Network (hereinafter “Service Network™ or “BSN”) is a
cross-cloud, cross-portal, cross-framework global infrastructure network to deploy and
operate all types of blockchain and distributed ledger technology (DLT) applications

(DApp).

BSN aims to lower the cost of developing and deploying DApps by providing public
blockchain resources and environment to developers, just like the internet. It can further
reduce the costs associated with the development, deployment, operations, maintenance,
and regulation of DApps and, thereby, accelerate the development and universal
adaptation of blockchain and DLT technologies.

36

Blockchain-based Service Network User Manual

A complete DApp system based on BSN generally consists of two parts: the on-BSN
DApp smart contracts and the off-BSN systems. The off-BSN systems use the BSN
Public City Note (PCN) gateways to invoke the DApp smart contracts deployed on the
PCN to carry out on-chain operations such as executing transactions, writing data chain,
data queries, etc. The DApp service publishers and participants can deploy their off-
BSN systems on any cloud services they choose and then connect to the BSN PCN
gateways through the internet access DApp smart contracts and data.

Off-BSN System

PCN Gateway

4 N

Transaction Endorsement

Smart Contract/Chaincode

0i0 |

Ledger
_ Peer Node Y,
Public City Node(PCN)

The BSN DApp service publishers and participants should have their off-BSN systems
so that they can access the DApp smart contracts to execute transaction and query data
via the PCN gateway APIs. The following are the charts to show the connecting flow
and transaction sequences.

Off-BSN System Connection Flow:

Blockchain-based Service Network User Manual

Off-BSN System PCN Gateway Authority Chain

Initialize the Receive
transaction Transaction

Initialize
identity
verification

Verifying
identity

Receive
verification
result

Invoking Chaincode
chaincodes transactions

Endorse,
BN T B i Return———— ordering,
create block

38

Blockchain-based Service Network User Manual

Off-BSN System calling sequence:

w
Off-BSN PCN Authority DA
m System Gateway Chain PP
I
| |
|

|
|
|
|
Invoking PCN Gateway :
APlwith Access and TL! |
certificates Verifying identity,
and authority

- _Return verfication _
result

Invoking Chaincode Functions
and execufe transactions >

|
Retur! | chaincode

transaﬁtion result

Block writtfn into Ledge
|

.| .
Return chaincode transaction
fingl result

_ _Return Chaincode _
Transaction Result

— — ‘Return Results- — —

39

Blockchain-based Service Network User Manual

5.4.2 BSN Smart Contract Package Requirements

A smart contract, also known as chaincode in Hyperledger Fabric, is a computer protocol
intended to digitally facilitate, verify, or enforce the negotiation or performance of a contract.
Smart contracts allow the performance of credible transactions without a third party. These
transactions are trackable and irreversible. A smart contract is invoked to automatically execute
a transaction and operate ledger data. A DApp service on BSN can deploy multiple smart
contracts. Each smart contract can contain multiple functions.

5.4.2.1 Hyperledger Fabric smart contract package requirements

Hyperledger Fabric (“Fabric”) chaincode can be compiled by multiple programming languages,
including Golang, java, and node.js. Each chaincode program must implement a chaincode
interface which usually consists of three basic functions: Init, Invoke, and Query.

® [Init: This function is called during the chaincode instantiation and its purpose is to prepare
the ledger for future requests. This function must be implemented in all chaincodes.

® Invoke: The Invoke function is called for all future requests from the off-BSN systems
towards the DApps. Here all DApp custom functions or what the DApps can do (for
example, to read data from the ledger, to write data in the ledger, to update data, to delete
data) are defined. Simply put, Invoke can be understood as an entry point to the chaincode
functions. The Invoke function also must be implemented in all chaincodes.

® Query: The Query function provides a method of querying ledger data. This function can
only be used for query purposes and does not offer any operations of ledger data. The Query
function is not required to be implemented in all chaincodes.

Note: Fabric 1.4 chaincode package cannot be directly used in Fabric 2.3.2, you need to modify
the contract according to the latest chaincode dependencies with the corresponding language.

To realize the automatic deployment of DApp services and to improve deployment efficiency,
the following Fabric chaincode packaging requirements have been issued with different
programming languages.

1. Golang

The main function must be at the same or higher level as all chaincodes in the project. The
zipping path must be the same level folder where the main function is located, and the main
function path is the src-based path.

Example: BsnBaseCC Package (the preset chaincode package)
BsnBaseCC

I—main. go
I——ChainCode/
I—models/
L—utils/

The package should be zipped under BsnBaseCC/ (package name is not required), and the main
function path (reference path) is BsnBaseCC.

40

Blockchain-based Service Network User Manual

Example: FabricBaseChaincode chaincode package on github (preset chaincode package)

github.com
L—BSNDA
L—FabricBaseChaincode

L—chaincode

'—go

L—psnBaseCC

L—main.go

L—ChainCode/

L—models/

L—utils/

It should be zipped under

github.com/BSNDA/FabricBaseChaincode/chaincode/go/bsnBaseCC/ (package name is not
required), and the main function path (reference path) is
github.com/BSNDA/FabricBaseChaincode/ chaincode/go/bsnBaseCC.

Description: main.go: the entry; ChainCode: chaincode; models: entities; utils: utilities.
Note: Below is the structure of the Fabric 2.3.2 preset chaincode package

chaincode-demo

L—main.go

L—chaincode/

L—vendor/

L—g0.sum

L—g0.mod

2. Java

gradle or maven-built projects, the projects must contain build.gradle or pom.xml files.
Example: BsnBaseCC package

BsnBaseCC

L—build.gradle

41

Blockchain-based Service Network User Manual

L—grc

L—main
L —java

L—com.example.javacc

L—javacc.java

Package must be zipped under BsnBaseCC/, and there is no requirement for the name of .zip
package.

Note: src/main/java: project directory; com.example.javacc: package name; javacc.java:
chaincode information

3. Node.Js

package.json file must be built into the project’s root directory. Package needs to be zipped
under the directory of BsnBaseCC/. There is no requirement of the name of .zip package.

Example: BsnBaseCC package

BsnBaseCC

L—marbles_chaincode.js

L—package.json
Description: marbles_chaincode.js: chaincodes

Note: when publishing DApp services in the BSN portal, chaincode packages should be created
in the project’s root directory using .zip format.

5.4.2.2 Hyperledger Fabric preset smart contract package

A preset chaincode package (Golang) is provided to BSN developers which contains basic
functions such as add, delete, edit, and query. New DApp developers can learn from this
package about Fabric chaincode programming and further extend the functions if needed. The
chaincode in this package supports data types such as string, integer, float point, and sets (map,
list), etc.

Please click this link to download:
Fabric 1.4.3:
https://github.com/BSNDA/FabricBaseChaincode

Fabric 2.3.2:

https://github.com/BSNDA/FabricBaseChaincode/tree/master/chaincode/go/bsnBaseChainco
de

DApp publishers can also select the preset chaincode package directly from the DApp
publishing page on the BSN portal.

42

https://github.com/BSNDA/FabricBaseChaincode/tree/master/chaincode/go/bsnBaseChaincode
https://github.com/BSNDA/FabricBaseChaincode/tree/master/chaincode/go/bsnBaseChaincode

Blockchain-based Service Network User Manual

The Preset Chaincode package functions are as follows:

1.

2.

3.

4.

5.

Add data (set)

Input parameter description:

baseKey: a unique primary key identifier of data
baseValue: stored data information

Example: {"baseKey": "str","baseValue": "this is string"}

Of which, the baseKey cannot be a blank string and the baseValue can be any type of data.
If the baseKey already exists, then directly return that it already exists and cannot be added;
if it does not exist, then add data.

Update data (update)

Input parameter description:

baseKey: a unique primary key identifier of data
baseValue: stored data information

Example: {"baseKey": "str","baseValue": "this is string"}

Of which, the baseKey cannot be a blank string and the baseValue can be any type of data.
If the baseKey does not exist, then it cannot be updated; if it already exists, then update
the data.

Delete data (delete)

Input parameter description

baseKey: a unique primary key identifier of data
Example: "str"

Of which, the baseKey value cannot be blank and must exist, else it cannot be deleted.

Get data (get)

Input parameter description

baseKey: a unique primary key identifier of data

Example: "str"

Of which, the baseKey value cannot be blank and must exist, else it cannot be retrieved.

Get historic data (getHistory)

Input parameter description

baseKey: a unique primary key identifier of data

43

Blockchain-based Service Network User Manual

Example: "str"

Of which, the baseKey value cannot be blank. Response results: transaction Id (txId),
transaction time (txTime), whether to delete (isDelete) and transaction information (datalnfo).

We welcome developers to share their custom chaincodes as preset chaincode packages for the
BSN and work with us to expand the blockchain application support capabilities of the BSN.
5.4.2.3 FISCO BCOS smart contract package requirements

To realize automatic audit and deployment of FISCO BCOS (FISCO) DApp services and to

improve efficiency, the following FISCO smart contract packaging requirements have been
issued:

1. Package Structure of the Solidity smart contract

All smart contracts must be stored in a single-level folder including smart contracts, libraries,
and external contract interfaces. Import method of all contracts is import “./XXXX.sol”.

2. Smart Contract deployment instruction document (deploy.md)

deploy.md is used to explain clearly how the smart contract is initialized and deployed. It

consists of three main parts:

e Contract Description: to briefly describe the basic information of each contract.

e User Description: to describe the basic information of each transaction signing users
during initialization and deployment.

e Contract initialization description: to describe the steps of smart contract initialization
and deployment, so that BSN tech personnel can follow to complete the process.

3. Contract uploading specifications

When uploading a chaincode package (smart contract package), fill in the chaincode name
(contract name) that is consistent with the main contract class name and the main contract file
name.

Example: BsnBaseGlobalContract chaincode package (preset chaincode package)
BsnBaseGlobalContract
L—BsnBaseGlobalContract.sol

L—Table.sol

Package must be zipped under BsnBaseGlobalContract/. The zipped package name is not
required. If the main contract class name is BsnBaseGlobalContract, the main contract file
name should be BsnBaseGlobalContract.sol, and the chaincode name (contract name) must be
filled in as BsnBaseGlobalContract.

4. BSN Adaptation for FISCO Solidity Version Descriptions
Currently, FISCO BCOS in the BSN only supports Solidity 0.4.25 and older versions.
5.4.2.4 FISCO BCOS preset smart contract package

The FISCO Preset Smart Contract package is chosen from the Table.sol provided by the FISCO
BCOS development team, and can provide developers with basic functions such as insert,
remove, update, or query (using Solidity). New DApp developers can learn from this package

44

Blockchain-based Service Network User Manual

about FISCO smart contract programming and further extend the functions, if needed. The
stored data types supported by this smart contract include int256(int), address, and string, of
which string cannot exceed 16MB. To ensure on-chain performance, there is no analysis of
duplicate base id and base key. This should be handled by the off-BSN system. It is
recommended that each base id has only one corresponding base key and base value.

Please click this link to download:
https://github.com/BSNDA/FISCOBaseContract

The preset smart contract functions are as follows:
1. Insert data (insert)
Input parameter description
base id: the primary key identifier that requires inserting
base key: the key of the data to be inserted
base value: the value of the data to be inserted
Example: {"base id": "1","base key":1,"base value":"this is string"}
Of which, base id and base value cannot be blank strings and the base key is in int256
data type.
2. Update data (update)
Input parameter description
base id: the primary key identifier that requires updating
base key: the key of the data to be updated
base value: the value of the data to be updated
Example: {"base 1d":"1","base key":"1","base value":"this is string"}
Of which, base_id and base value cannot be blank strings and the base key is in int256
data type. If the base id and base key do not exist, then they cannot be updated; if they
already exist, then the data will be updated.
3. Remove data (remove)
Input parameter description
base id: the primary key identifier that requires removing
base key: the key of the data to be removed
Example: {"base 1d":"1","base key":"1"}
Of which, the base id and base value cannot be blank and must exist, otherwise they
cannot be removed.
4. Select data (select)
Input parameter description
base_id: the value of the primary key identifier that requires being selected
Example: {"base id":"1"}

45

Blockchain-based Service Network User Manual

Of which, the base id cannot be blank and must exist, otherwise, it is not possible to select the
corresponding data.

5.4.3 PCN Gateway Fabric API

A PCN gateway is deployed on each public city node (PCN) to receive off-BSN system
requests signed and verified by DApp access keys. Then requests are routed to the
corresponding Fabric-based DApp chaincodes. Invoking the PCN gateway is realized by
sending HTTP requests to each PCN gateway service. The gateway is responsible for verifying
user and application identities and then uses these identities and chaincode functions to process
chaincode parameters and to send the chaincode transaction results back to the off-BSN
systems.

5.4.3.1 DApp Access Signature Algorithm

Whenever an off-BSN system sends requests to the PCN gateway, the HTTP request message
should be signed with the participant’s DApp access private key. When the PCN gateway
receives the message with the digital signature, it will verify the authentication and message
integrity with the corresponding hosted or uploaded DApp access public key. The gateway will
only process the request message further after the verification is passed.

1. Assemble signature string

Convert the request parameters into a joined string according to the order of the parameter table,
of which the request parameter prioritizes joining UserCode and AppCode of the Header and
the response parameter prioritizes joining code and msg. Then join the parameters in the Body
according to the order of the parameter tables in the definition of APIs.

2. Different type conversion formats

Type Rule Example Result
String No conversion abc Abc
Int/int64/long | Decimal conversion -12 -12
Float Decimal conversion; see notes for 123 123
values after decimal point
Bool Convert to “true” or “false” true True
Join according to parameter e e s
Array sequence and type {“abc”, “xyz”} Abcxyz
Map[key]valu | Join key and value according to a™1, “b:2) a1b2
e parameter sequence
Convert the attributes in the object
Obicct one by one according to the “name”: “abc”, abc12345
) document in the above-described “secret”: “123456”} 6
format

3. Signature rules

e Getting the Hash value - The converted string to be signed is required to be computed

with the SHA256 algorithm with UTF-8 encoding.

e Sign the Hash value - The hash value and private key should be encrypted with the
ECDSA (secp256r1) algorithm. If signed with SHA256WithECDSA, which includes

hash value computation, the first step is not necessary.

e Encoding the signature result to Base64.

4. Example

46

Blockchain-based Service Network User Manual

Parameters:

{"header": {"userCode":"user01","appCode":"app01"},"mac":"","body": {“userld”’:’abc”, list
,’: [Céabc,’,”xyz,’] } }

Result: user01app0labcabexyz

5.4.3.2 Keys and Certificate Modes
1. Key Trust Mode

As described in chapter 5, DApp participants require two sets of key pairs to access the DApp:
DApp access key pair and user transaction key pair. With key trust mode, the pairs are
generated and hosted by BSN. The participants only need to download the private key (DApp
access key) from the BSN portal.

® DApp Access Key Pair: After the participant has successfully joined the DApp, BSN will
generate one key pair (private and public keys) that corresponds to the DApp’s framework
algorithms under the Key Trust Mode. The participant can download the private key from
the “My Certificates” section of the BSN global portal and use it to sign the request message
sent to the PCN gateway. The gateway will use the hosted public key from the generated
key pair to validate the signature.

® User Transaction Key Pair: This is the identity of a participant used to invoke the
chaincodes. Under the Key Trust Mode, after successfully joining a DApp, a participant’s
user transaction key pair will be created automatically by BSN by default. The participant’s
off-BSN system can use the participant’s UserCode to invoke the certificate generated by
the key pair. If the participant’s off-BSN system has multiple sub-users, the off-BSN
system can invoke the gateway’s “User Registration API” to register the sub-users and
generate separate user transaction key pair for each sub-user. The sub-users can use their
UserCode to connect to the DApp to execute transactions.

47

Blockchain-based Service Network User Manual

Transaction process:

Off-BSN System PCN Gateway

1. Invoking "User Registration™ API4]
———————— 1.1 Return User information ———————

2. Invoking "Key Trust Mode Invoking
chaincode™ API | '
———————— 2.1 Return transaction result ———————

3. Invoking "Retrieving Transaction
information™ API

2. Public Key Upload Mode

As described in chapter 5, DApp participants require two sets of key pairs to fully access the
DApp: DApp access key pair and user transaction key pair. With public-key upload mode, the
key pairs are generated and stored locally by the participants. The participants only need to
upload the public keys to BSN via the BSN portal or gateway APIs.

® DApp Access Key Pair: The DApp participant must generate the DApp access key pair
locally according to the DApp framework algorithm after successfully joining the DApp.
The participant stores the private key locally and uploads the public key to BSN via the
BSN global portal. The participant’s off-BSN system uses the private key to sign the
transaction messages when invoking the PCN gateway. The PCN gateway will use the
public key uploaded by the participant to verify the signature and validate the legality of
the transaction.

® User Transaction Key Pair: This is the identity of a participant to invoke the chaincodes.
Under the Key Trust Mode, the participant must generate the user transaction key pair
locally and use the public key to generate the “public key registration application.”, then
from the participant’s off-BSN system to submit the registration application to BSN by
invoking the “Public Key Upload Mode user certification registration” API on the PCN
gateway to receive the public key certificate. If the off-BSN system has sub-users, it should
first invoke the “User Registration” API to register the sub-users before sending their public
key registration applications.

48

Blockchain-based Service Network User Manual

Transaction process:

Off-BSN

System PCN Gateway
[
|

2. Invoking "User Certificate
registration” API '
————————— 2.1 Return certificate info ——————-—— 8
|
3. Assemble :
Transaction |
|
|
|

Parameters

4. Invoking "Public Key Upload Mode
Invoking Chaincode" API

———————— 4.1 Return transaction result ———————

5. Invoking "Retrieving Transaction
information” API

5.4.3.3 Get DApp information API

Invoke this interface to get basic DApp information; this interface can be used with Public Key
Upload Mode transactions.

1. Interface address:

https://PCNgatewayAddress/api/app/eetApplnfo

2. Call Method: POST
3. Signature Algorithm: Not Required

4. Call parameters

1 Header header Map Yes
2 Body body Map No
3 Signature value mac String Yes
Header

1 User unique 1D userCode String Yes
2 DApp unique ID appCode String Yes
- | | |
Example:

49

https://pcngatewayaddress/api/app/getAppInfo

Blockchain-based Service Network User Manual

{"header": {"userCode":"USER0001202004151958010871292","appCode":"app0001202
004161020152918451","tId":""},"mac": "","body": {}}

5. Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature value mac String | Y
Header
. 0: successful
1 Response ID code int Y 1: failed
2 Response Message | msg String | Y
Body
1 DApp name appName String | Y
2 DApp type appType String | Y
DApp encryption 1: Key Tmst Mode
3 Key type caType Int Y 2: Public Key Upload
Mode
4 DApp algorithm algorithmTy Int v 1: SM2
Type pe 2: ECDSA (secp256rl)
5 City MSPID mspld String | Y
Fabric corresponding
6 DApp chain name | channelld String | Y channelld, fisco
corresponding groupld

Example:

"header": {
"code": 0,
"msg": "Transaction Successful"
s
"mac":
"MEUCIQDE9zvOE/w4V/ILG6WUCFP08a7NDCAtX/10ZOcCyY4gIQIgUTYWsFTA1KES8
8gE6452jKnnVBrhznGVOV2HPMCbNhSA=",
"body": {
"appName": "sdktest",
"appType": "fabric",
"caType": 2,
"algorithmType": 2,
"mspld": "OrgbNodeMSP",
"channelld": "app0001202004161020152918451"

5.4.3.4 User Registration API

In both Key Trust Mode and Public Key Upload Mode, when a user participated in a Fabric
DApp wants to create a unique user transaction key certificate for a sub-user of the off-chain
system, the off-BSN system should invoke the User Registration API to register the sub-users
on the PCN first. A sub-user’s username is name@appCode in the request parameters

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/user/register

50

https://pcngatewayaddress/api/fabric/v1/user/register

Blockchain-based Service Network User Manual

2. Call Method: POST
3. Signature Algorithm: required and refer to Section 5.4.3.1

4. Call parameters

1 Header header Map Y

2 Body body Map N

3 signature value | mac String | Y

Header

1 user unique ID | userCode | String | Y

2 DApp unique ID | appCode | String | Y

Body

1 user name name String | Y Length<20
For Key Trust Mode DApps,
this can be blank; for public

2 user password secret String | N key upload mode DApp, if this
is blank then return with a
random password

3 extende_d exte_ndPro String | N User extegded properties, json

properties perties format string

Example:

{"header": {"userCode":"USER0001202101301022113596689","appCode":"app000120210

9171125562435760","tId":""},"mac":"MEQCID3F4z2XpN4JsCU/gR0O910Ziw1101Cx8eVg

VWUVItvWyAiA1Y0uObgCV5tm1avSz9BscYrlaycm{BtFSIQ30190YEQ==","body": {"n

ame":"user20210927","secret":"123456","extendProperties":" {'key1":'value'} "} }

5. Response parameters

1 Header header Map Y
2 Body body Map Y
3 571 aglrlll:zture mac String Y
Header
. 0: successful
1 Response ID | code int Y 1 failed
2 i/[eessps ZI;S: msg String Y
Body
1 user name name String Y Length<20
For public key upload mode
user . DApps, if the call parameter
2 password secret String Y pasva;ord is blank It)hen return
with a random password
Example
{
"header": {
"code": 0,
"msg": "Transaction Successful"
}s
"mac":
"MEUCIQCIfufMUS8KRI1gMHIGqfWO1iv2KIhS+HOdIUUdEuUrLQIgYJz98xp5w/KdV
P6bJjHhV2pZPTe9Cnd4xcOrPV4AET7ZsA=",
"body": {
"name": "user01",

51

Blockchain-based Service Network User Manual

"secret": "123456"
}

}

5.4.3.5 Invoke chaincode API in Key Trust Mode

For DApps in Key Trust Mode, when the off-BSN system invokes the chaincode functions via
PCN gateway, it is required to insert the parameters in the request message. The gateway will
return the response message from the chaincode.

1. Interface address:
https://PCNGatewayAddress/api/fabric/v1/node/reqChainCode

This interface will directly return the response message without waiting for the generation of
block. Please use “Get transaction information API” described in section 5.4.3.8 to check the
status of a block generated based on transaction ID.

Note: After a user has successfully participated in a DApp service, this participant can view
and download the DApp’s configuration parameters which are used for off-BSN systems to
connect to this DApp’s chaincodes, including the PCN gateway address and Dapp access keys,
as shown below:

nam Blockchain-based (Q) User Manual [Documentation (5] Message Center 2, Profile
Service Network

s City Nodes Certificate Mode Access Address

de: USERD003202006082324013815938
opCode: appbOD3202007061026339883125
My Cartificates td: d7749830967349219454ch3a8d 757893

e: applOD3202007061026339883125

User Center Chaincode Name name Function Name FUNC

2. Call Method: POST
Signature Algorithm: required and refer to Section 5.4.3.1

4. Call parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
Header

1 user unique ID | userCode String Y
2 g)App umque appCode String Y
3 User and DApp | tld String N

52

Blockchain-based Service Network User Manual

5.

| mapping ID |
Body
1 user name userName String N
. . Use 24 random byte array
random string nonce String Y of the base64 encoding
1 chainCode chainCode String Y
function name funcName String Y
3 Call parameters | args String[] | N
Map<str
4 Transient data transientData | ing,strin | N
2>
Example:
{"header": {"userCode":"USER0001202004161009309407413","appCode":"app0001202004
161017141233920","tId":""},"mac":"MEQCICJpE1jfeJKtw/ZboVuKSLy2RmmSdkhrEVPG
FJhm9lalAiA/Qqs6RNz0OndSS4/AFSwBj7vC76Py 1hXnqO5zMDI9pNtA==","body": {"userN
ame":"","nonce":"IgH70zfvonpqg9D3pSbq9c6o+rAcpasSD","chainCode":"cc_app000120200
4161017141233920 00","funcName":"set","args":[" {\"baseKey\":\"test2020048\",\"baseValu
e\":\"this is string \"}"],"transientData": {} } }

Response parameters

1 Header header Map Y
2 Body body Map Y
Signature .
3 Value mac String Y
Header
) 0: authentication successful
! Response ID | code mnt Y -1: authentication failed
2 Response msg String N if code=0 then can be null
Message
Body
1 block ‘ blockInfo blockInfo N If code is not 0, then leave
information blank
chaincode If code is not 0, then leave
2 response ccRes ccRes N
blank
result
blockInfo
1 Transaction txId String Y
ID
. On synchronous mode
2 Block HASH | blockHash | String N returns Block HASH
Refer to the detailed
3 status value status Int Y transaction status
description in 5.4.3.17
ccRes
1 ::sa H;fl(s)g) ccCode Int Y 200: Successful
p 500 Failed
status
chaincode .
) response ccData Str N Actual chaincode response
result
result
Example
{
"header": {

53

Blockchain-based Service Network User Manual

"code": 0,

"msg": "Transaction Successful"
s
"mac":

"MEUCIQCBtfO1AfYkoJ2hllp8 CfKK 1iuhVEAYKPY8YFRAdVPJ1AIgDjSqY gwlORJIRyYF6
KZPUACSFx/DxXxu9VgKwU9+JhjUu=",
"body": {
"blockInfo": {
"txId": "a144149150ee615a9d11c68485600f43dc2c3eb2a98d7b36de53a6b99e¢03c495",
"blockHash": "",
"status": 0
}s
"ccRes": {
"ccCode": 200,
"ccData": "SUCCESS"

}
}
;

5.4.3.6 User certificate registration in Public Key Upload Mode

For DApps in Public Key Upload mode, after the participant registered the sub-users on the
PCN by using “User Registration API” (section 5.4.3.4), he/she can use this interface to upload
public key registration applications and receive the certificates (DApp access key pair
certificates) for the sub-users. Invoking this interface from Key Trust Mode DApp will return

an error message.

1.

Interface address:

https://PCNGatewayAddress/api/fabric/v1/user/enroll

Call Method: POST
Signature algorithm: required and refer to Section 5.4.3.1

Call parameters

1 Header header Map Y
2 Body body Map N
Signature .
3 Value mac String Y
Header
1 user unique ID | userCode String Y
2 R)App unique appCode String Y
Body
1 user name name String Y user name used at
registration
2 user password | secret String Y Pas§ worq created at
registration
Certificate g: ﬂle 6Er$)Da?A0rithm
3 Application csrPem string Y P &
to generate the
file content) .
certificate application

54

https://pcngatewayaddress/api/fabric/v1/user/enroll

Blockchain-based Service Network User Manual

file; the certificate CN
is name@appCode

Example:

{"header": {"userCode":"USER0001202004151958010871292","appCode":"app00012020
04161020152918451","tId":""},"mac":"MEQCICQa¥Y Mzs+edIQkfptShoaSO5dWqcrY7Q
75FYwyJo/B4rAiAQ10aEpdNATsZYHVcJI4TxVCgY 8XdQBBIyTAOqUmSjkw==","bo
dy":{"name":"user01","secret":"123456","csrPem":"-----BEGIN CERTIFICATE
REQUEST-----
\nMIHoMIGQAgEAMC4xLDAqBgNVBAMMI3VzZXIwMUBhcHAWMDAXMjAyMD
AOMTYxMDIw\nMTUyOTE4NDUXxMFkwEwYHKo0ZIzj0CAQYIKo0ZIzj0DAQcDQgA
EngukIxunmuU1bnKB\nam8QmeK6Geg/O6kL2D2ig8 SUMQTpG/sb91Y kduz8iCOSRnF
9TvLiHuvJX2FGAOAQ\nK1Vz8aAAMA0oGCCqGSM49BAMCAOcAMEQCIE191in91
KIfEvfFIbxhF14enFHhtvOU\n5rK86huFiMMQAiBY X041I1Bq6el.GjaavR7109fOvVZ5
W7X+GQjllQDuDgPQ==\n-----END CERTIFICATE REQUEST-----\n"}}

5. Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
Header
0:
1 Response ID code int Y successful
-1: failed
2 Response Message msg String Y
Body
1 | Certificate content | cert | String | Y |
Example
{
"header": {
"code": 0,
"msg": "Transaction Successful"
s

n "n.

mac":
"MEUCIQCEOgg5VHWsZIuNKAV2+xOJANGnCkw619J4+mFT1TWz/glgfu93jqzTzk0
DU2IfMKnExcwVbgel WMLVLmwKplCXNBA=",

"body": {

"cert": "-----BEGIN CERTIFICATE-----
\nMIICvTCCAmMSgAwWIBAgIUcqn2ZHmCYmq/V2yKbnxuvc49KUOOWCgYIKoZIzjOEA
wIw\nTJELMAKGA 1UEBhMCQO04xEDAOBgNVBAgTB0JlaWppbmcxDDAKBgNVB
AoTAOJTTJEP\nMAOGATUECXMGY 2xpZW50MQ4wDAYDVQQDEwWVic25jY TAgF
wOyMDAOM]EwNTAzMDBa\nGASyMTAwWMDMyMTExMDQwMFowbDESMAOGA
TUECXMGY2xpZW50MASGATUECXxMIb3Jn\nYmSvZGUwDgYDVQQLEwdic251YX
NIMAoGAITUECXMDY29tMSwwKgYDVQQDDCN1c2Vy\nMDFAY XBwMDAwWMTI
wMjAWNDE2MTAyMDEIMjkxODQIMTBZMBMGByqGSM49AgEGCCqG\nSM49
AwEHAOIABJ4LpNcbpSrINWS5ygWpvEJIniuhnoPzupC9g900POVDEE6Rv7G/Ym\nJH
bs/IgvUkZxfU7y4h7ryVOhRgDgECtVc/Gjgf8wgfwwDgYDVROPAQH/BAQDAgeA\n
MAwWGA1UdEWEB/WQCMAAWHQYDVROOBBYEFG28toKRbzJTFa6v/xIIYr6S9Eva
MB8G\nA1UdIwQYMBaAFAcI4H+kIs8vn94ZYY pkrd+51dMKMIGbBggqAwQFBgcl
AQSBjnsi\nY XR0cnMiOnsiaGYuQWZmaWxpY XRpb24iOiJvemdibm9kZS5ic251Y XN
ILmNvbSIs\nImhmLkVucm9sbG11bnRIRCI6InVzZXIwMUBhcHAWMDAxMjAyMDA
OMTYxMDIwMTUy\nOTE4NDUxIiwiaGYuVHIwZSI6ImNsaW VudClsInJvbGUiOilJjb
GlIbnQifX0wCgYT\nKo0ZIzjOEAWIDRWAWRAIgLtITps/DOHK8S3La7bnlChB+88b1Fk
09bOAL360AFPIC\nIHQPCC30MoTHIId/X3fC5IxNukssmIMnEuDX73zRL55/\n-----

55

Blockchain-based Service Network User Manual

END CERTIFICATE---—-\n"
}
h

5.4.3.7 Invoke chaincode in Public Key Upload Mode

For DApps in Public Key Upload mode, the participant needs to assemble the transaction
message locally, and invoke this interface to initiate the transaction from the off-BSN system

to the DApp’s chaincode.

1.

Interface address:
https://PCNGatewayAddress/api/fabric/v1/node/trans

Call Method: POST
Signature algorithm: required and refer to Section 5.4.3.1

Call parameters

1 Header header Map Y
2 Body body Map N
3 Signature Value | mac String Y
Header
1 user unique 1D userCode String Y
2 DApp unique ID | appCode String Y
Body
the transaction data
1 Transaction data | transData String Y should be encoded
with base64
Example:

{"header": {"userCode":"USER0001202004151958010871292","appCode":"app0001202
004161020152918451","tId":""},"mac":"MEUCIQCV8EZ20qbSbI9xGGKX06Mquh+g
+NhhbUoAJBbnemXdaglgNMF7W7ecuSuej9BpVx04qwluVijbgcp3VYIcjDK0Z38=","
body": {"transData":"CqOKCrsJCpcBCAMaCwi9gPrOBRDO0Oo+Z2IhxhcHAWMDAXMjA
yMDAOMTYxMDIwMTUyOTE4NDUxKkBjM2M2NTIzOTU4YzM4MTExOTJiOGQ
zNThkZDI2MTdmMWIXNGNiNj YxZGU2YjAyMmMxY TgyMjI20WU4Y ThjNDhkOi
YSIBIiY2NfYXBWMDAWMTIwWMjAwWNDE2MTAyMDE1MjkxODQ1MV8wMBKeC
AgBCAOLT3InYk5vZGVNU1AS8QctLSOtLUJFROIOIENFUIRJRKIDQVRFLSOtLSOK
TUQ3ZUQONBbVNnQXdJQkFnSVVWanBGZTJFaERFaHJIOHBBVTh4bkd3dXhPb
U13Q2dZSUtvWkl6ajBFQXdJdwpUakVMTUFrROExVUVCaE1DUTAOeEVEQUICZ
05WQKFnVEIwSmxhV3BwYm1jeEREQUtCZ05SWQkFvVEEwWSIRUakVQCk1 BMEdB
MVVFQ3hNR1kyeHBaVzUwTVEOdORBWURWUVFERXdWaWMyNWpZVEFnRnc
weUlEQTBNVGt3TkRNek EQmEKROE4eUTUQXANREISTVRFeE1EUXdNRmM93Y
kRFOE1BMEdBMVVFQ3hNR1kyeHBaVzZUwTUE4ROExVUVDeE1JYjNKbgpZbTV2
WkdVdORnWURWUVFMRXdkaWMyNWIZWESsTUFVROExVUVDeEIEWTISdELT
d3dLZ11EVIFRRERDTjBaWE4wCk1 ESKFZWEJ3TURBdO1USXdNakF3TkRFMk1U
QXINREUXxTWpreE9EUTFNVEJaTUINROJ5cUdTTTQSQWdAFRONDcUcKUOOOOUF
3RUhRBMEIBQKSYZmFMVWIwMXIJSFVMMXVKeEdwMDFQNHESZk81V2xFMF
ZtallY QmVMejBhYlhqSU96NwpYb29KcGRUS1ZkUUJaZzYrZkVPWmhudm1vbUR
XWjRpdTRhYWpnZjh3Z27Z3d0ORnWURWU;BQQVFILOJBUURBZ2VBCk1Bd0dBM
VVKRXAFQi93UUNNQUF3SFFZRFZSME9CQIIFRkZZRDg5emtk VIIRbzZpUEh3d2R
JejNaQ11Sck1COEcKQTFVZEI3UVINQmFBREKFjSTRIK2tJczh2bjkOWIIZcGtyZCs 1b
GRNS01JR2JCZ2dxQXdRRkJnYOIBUVNCam5zaQpZWFIwY25NaU9uc2lhR111UVda

56

https://pcngatewayaddress/api/fabric/v1/node/trans

Blockchain-based Service Network User Manual

bWFXeHBZWFJwYjl0aU9%pSnZjbWRpYmO05alpTNWIjM;jVpW VhObExtTnZiU01zCkl
taG1MalZ1Y205c2JHMWxiblJKUKNINkIuUmxjM 1 F3TWtCaGNIQXdNREF4TWpBe
U1EQTBNVFI4TURJAO1UVXKKTIRFNESEVXhJaXdpYUdZdVZIbHdaU0k2SW10c¢
2FXVnVkQOIzSW5KdmJHVWIPaUpqYkdsbGJuUWImWDB3Q2dZSQpLblpJemowR
UF3SURSAOF3UKFJZ1ZZNi9jZINDTmpENkxwTXVaZEQzVWYvWko5c3FSUVVT
R3hSQUI9SeGZONThDCKIFNOJHTDIjOHRCcHIJiVmpY T1dtQmpObWhqeUE3NOI13S
W8rbUg1ZXp4R1B1CiOtLSOtRUSEIENFUIRJRKIDQVRFLSOtLSOKEhiQKmgB1Ibwb
gLAyoHXUNnjZSGOqBDheQMSbQprCmkIARIKEiJjY 19hcHAWMDAXMjAyMDAO
MTYxMDIwMTUyOTE4NDUxXzAwGj8KA3NIdAo4eyJiYXNIS2V5IjoidGVzdDIw
MjAwWNDAOILiwiYmFzZVZhbHVIljoidGhpcyBpcyBzdHJpbmcgIlnOSRjBEAIB+mOUK
Y7fRjcZ1/qc96YPIGGod3UKS56jJaWaE403J90QIgeirrjyzL6zQLN89tv3jDpl 7vxKChk
GMOuBIEFiFEGYo="}}

5. Response parameters

1 Header header Map Y
2 Body body Map Y
Signature .
3 Value mac String Y
Header
0: authentication
. successful
1 Response 1D code int Y “1- authentication
failed
2 Response msg String N If code=0, can be null
Message
Body
| block blocklnfo | blocklnfo | N If code is not 0, then
information leave blank
’ chaincode ccRes ccRes N If code is not 0, then
response result leave blank
blockInfo
1 Transaction Id | txId String Y
. On synchronous mode,
2 Block HASH | blockHash | String N returns Block HASH
refer to detailed
3 status value status Int Y transaction status
description in 5.4.3.17
ccRes
chaincode 200: successful
! response status ccCode Int Y 500: failed
) chaincode ccData Str N actual chaincode
response result response result
Example
"header": {
"code": 0,
"msg": "Transaction Successful"
¥
"mac":
"MEQCICXNk400+Gkqqe2XgoaxdOolvDQe4RfLtwXkxjC7ce8TAIBLVu6PjOqWueV
B3t4h7REpNdcV{6L0qVzfdAlyovuc7g==",
llbody": {
"blockInfo": {

57

Blockchain-based Service Network User Manual

"txId":
"c3¢6523958¢3811192b8d358dd2617f1b14cb661de6b022¢1a822269e8a8c48d",
"blockHash": "",
"status": 0
}s
"ccRes": {
"ccCode": 200,
"ccData": "SUCCESS"
§
§
§

5.4.3.8 Get transaction information API

The off-BSN system can use this interface to get the transaction information based on
transaction ID.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/node/getTransaction

2. Call Method: POST
Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 user unique 1D userCode String Y

2 DApp unique ID appCode String Y

Body

1 | transactionld | txId | String Y |

Example:

{"header": {"userCode":"USER0001202004151958010871292","appCode":"app0001202
004161020152918451","tId":""},"mac":"MEUCIQDIbcNI+C1iBbXWGW3qjhf80IRgC
gvluyxxOWXU2vn2TAlIgZgA020L.2aXBtrdLsYEKY PyiOJ9+AFrXOEwfuzy8B4bE=","
body": {"txId":"c3c6523958c3811192b8d358dd2617f1b14cb661de6b022c1a822269¢8a8
c48d"}}

5. Response parameters

1 Header header Map Y
2 Body body Map Y
Signature .
3 Value mac String Y
Header
0: authentication
. successful
1 Response ID | code int Y _1- authentication
failed
2 Response msg String N if code=0 then can

58

https://pcngatewayaddress/api/fabric/v1/node/getTrans

Blockchain-based Service Network User Manual

| message | | | | be null
Body
1 Block Hash | blockHash String Y
2 I%I{frflll()er blockNumber | Long Y
refer to detailed
3 Transaction status Int % transa}cti'on §tatus
status description in
5.4.3.18
4 on-chain createName String Y
user name
5 Timestamp timeSpanSec Int64 % “_second” in the
Second timestamp
Timestam . “nanosecond” in
6 Nanosecogd timeSpanNsec | Int64 Y the timestamp
Example
{
"header": {
"code": 0,
"msg": "Transaction Successful"
|3
"mac":
"MEUCIQDUFw5pa4QIJcEiQjYeLTI2L94HbsZbz7DArF+djgzWoTQIgU8u+dG6CcHw
BZjuf9PvhYdEFAa/ujwo8UAPbAMKxRq0=",
"body": {
"blockHash":
"ab9366¢163881228863c884527fceefabc9ad2e375aa0bebf71117f75¢7d3 15",
"blockNumber": 7,
"status": 0,
"createName": "test02@app0001202004161020152918451",
"timeSpanSec": 1587445821,
"timeSpanNsec": 249139700
§
}

5.4.3.9 Get transaction data API

This interface can be used by off-BSN systems to obtain transaction information based on the
transaction ID and then returns the string of the transaction information by base64 encryption.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/node/getTransdata

2. Call method: POST
3. Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
Header

59

https://pcngatewayaddress/api/fabric/v1/node/getTransdata

Blockchain-based Service Network User Manual

1 user unique 1D userCode String Y

2 DApp unique ID | appCode String Y

Body

1 | Transaction Id | txId | String | Y |
Example:

{"header": {"userCode":"USER0001202004151958010871292","appCode":"app00012
02004161020152918451","tId":""},"mac":"MEUCIQDIbcNI+C1iBbXWGW3qjhf801
RgCgvJuyxxOWXU2vn2TAlgZgA020L2aXBtrdLsYEkYPyiOJ9+AFrXOEwfuzy8B4b
E=","body": {"txId":"c3c6523958c3811192b8d358dd2617f1b14cb661de6b022¢c1a8222
69e8a8c48d"}}

5. Response parameters

1 header header Map Y
2 body body Map Y
3 signature value mac String Y
Header
0: authentication
. successful
1 Response ID code int Y _1- authentication
failed
Response . if code=0 then can
2 Message msg String N be null
Body
1 Transaction Id txId String Y
String generated
2 Transaction data | transData String Y by base64
calculation
Example
{
"header": {
"code": 0,
"msg": "success"
5>
"mac":
"MEUCIQDI63PUa4WjE01S4cdYySspMRSYPLFzZEvY GKHszTSFxtAIgND/A/Cky9XDpHL
NKQzOvgyflnb6edVy3JQisBn70ulM=",
"body": {
"txId": "b1b2ef26cff816dce49a40be3527092a2b0d43d244d57611bb2b95a05c063feb",
"transData": "CtYgCosgCrIKCpgBCAMa..........ccceeuenneen. "
h
}

5.4.3.10 Get block information API
After the data is uploaded to the chain, the off-BSN system can use this interface on the PCN

60

Blockchain-based Service Network User Manual

gateway to get the block information of the current transaction (body.blockInfo), the status
(body.blockInfo.status), and transaction ID (body.blockInfo.txId). If the status value is 0, it
signifies that the transaction has been successful and a block has been created. The block

information can be queried according to the transaction ID.

1. Interface address:
https://PCNGatewayAddress/api/fabric/v1/node/getBlockInfo
2. Call Method: POST
Signature algorithm: required and refer to Section 5.4.3.1
4. Call parameters
1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
Header
1 user unique ID userCode String Y
2 DApp unique ID | appCode String Y
Body
1 Block number blockNumber | Int64 N Can’t be null at the
same time
2 Block HASH blockHash String N Can’t be null at the
same time
3 Transaction Id txId String N Can’t be null at the
same time
Example:
{"header": {"userCode": "USER0001202004151958010871292","appCode":
"app0001202004161020152918451","tId": ""},"mac":
"MEUCIQCrGthrAvNalUsWEdnDxZkNXF4nCpXOxIFQdp1YYhGvuglgKvYql9Ex6RC
cOhqt6coufNPH/QhtKYNeThWIJ2rEL+4g=","body": {"blockNumber": 6,"blockHash":
n ”’”tXId": " "} }
5. Response parameters
1 header header Map Y
2 body body Map Y
3 signature value mac String Y
Header
0: authentication
. successful
1 Response ID code int Y _1: authentication
failed
Response . if code=0 then can
2 Message msg String N be null
Body
1 Block Hash blockHash String Y
2 Block Number blockNumber Long Y
Previous Block .
3 Hash preBlockHash String Y

61

Blockchain-based Service Network User Manual

4 Block Size blockSize Long Y byte
The number of
5 transactions on blockTxCount Int Y
current block
6 Transaction detail | transactions I[%Zs;nsactlon Y Transaction Detail
TransactionData
1 Transaction Id txId String
refer to detailed
Transaction transaction status
2 status Int .
Status description in
5.4.3.18
3 Tran.sactlon createName String
Provider
4 Transactlon timeSpanSec Int64
timestamp second
Transaction
5 timestamp timeSpanNsec Int64
nonasecond
Example
{
"header": {
"code": 0,
"msg": "Transaction Successful"
’s
"mac":

"MEUCIQC8nfFnHw4sEYJmaSTT1xepxMGgomxyJtt0ysyGgPBOAwIgfuuiegd GEbBi/2wmF
Cco39wmik3isLWtvnN9ZmJDTdk=",
"body": {
"blockHash": "fc83¢306677925¢efee540b4d7b7ca73e06f144cae34c¢706f1101d6b395ada2da",
"blockNumber": 6,
"preBlockHash":
"93¢86551d812229274¢144093cd4bd17dacb35bc6a01779930e11{43f886bf34",
"blockSize": 7020,
"blockTxCount": 1,
"transactions": [
{
"txId": "a8639f3a796267e¢048d475b00fc7646a4524f1c20d71880e19708821177b7bdb",
"status": 0,
"createName": "test02@app0001202004161020152918451",
"timeSpanSec": 1587271285,
"timeSpanNsec": 26436800

5.4.3.11 Get block data API

After the data is added to the chain, the off-BSN system will get the block information of the
current transaction by calling this interface on the public city node gateway.

1. Interface address:

62

Blockchain-based Service Network User Manual

https://PCNGatewayAddress/api/fabric/v1/node/getBlockData

2. Call method: POST

Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 user unique ID userCode String Y

2 DApp unique ID | appCode String Y

Body

1 Block number blockNumber | Int64 N Can’t be null at the
same time

2 Block HASH blockHash String N Can’t be null at the
same time

3 Transaction Id txId String N Can’t be null at the
same time

Example:

{"header": {"userCode": "USER0001202004151958010871292","appCode":

"app0001202004161020152918451","tId": ""},"mac":

"MEUCIQCrGthrAvNalUsWEdnDxZkNXF4nCpXOxIFQdplY YhGvuglgKvYql9Ex6RC

cOhqt6coufNPH/QhtKYNeThWIJ2rEL+4g=","body": {"blockNumber": 6,"blockHash":

" xId": ")

Response parameters

1 header header Map Y

2 body body Map Y

3 signature value mac String Y

Header
0: authentication

. successful

1 Response ID code int Y “1: authentication

failed
Response . if code=0 then can

2 Mespsage mse String N be null

Body

1 Block Hash blockHash String Y

2 Block Number blockNumber Long Y

3 gr;:ﬁous Block preBlockHash String Y
String generated

4 Block Data blockData String Y by base64
calculation

Example

{

"header": {
"code": 0,

63

Blockchain-based Service Network User Manual

n n. n

msg":
¥
"mac":
"MEQCICAgU3G601Ky6UeY gqEgCee27TS2F8ScH+jaSj6w200CAiB+/6z1a2jG5Sm4vvjz1ft
2L.QdIsaG2BAXqcwxmSFyElzg==",
"body": {
"blockHash":
"b8366a63ed32fddec720872d206802¢67022229d9a8a32983d26b59dbfd6971",
"blockNumber": 3,
"preBlockHash":
"6dcc69799682e2fc7{fa950c56031b807¢54b7a098b4fd69db9ct8c97518bcea”,
"blockData": "CkYIAxIgbcxpeZa............... "

success"

}
3

5.4.3.12 Get the latest ledger information API

Use this interface to get the latest ledger information, including block hash, previous block

hash, and the current block height, etc.

1.

Interface address:
https://PCNGatewayAddress/api/fabric/v1l/node/getLedgerInfo

Call method: POST
Signature algorithm: required and refer to Section 5.4.3.1

Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

Header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Example:

{"header": {"userCode":"USER0001202004151958010871292","appCode":"app00012020
04161020152918451","tId":""},"mac":"MEQCID7Z3J2PiRDOx7JasRamBZRTAHXj1X
AG1K/DUkzJEwuiAiBIY5p3H2kArE70uYLOgEqMHI15Xgj5Voi5zVPGhyU/+w==","b
ody": {}}

Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
Header
0: authentication
. successful
1 Response ID code int Y _1: authentication
failed
Response . if code=0 then can
2 Message msg String N be null

Blockchain-based Service Network User Manual

Body
1 Block Hash blockHash String Y
2 Block Height height Long Y
3 graesvhlous Block preBlockHash | String Y
Example
"header": {
"code": 0,
"msg": "Transaction Successful"
s
"mac":

"MEUCIQC4PhYTBNyt1rSeBeZTdOly42CxILVgK1b/RlieA33G1glgeodoEa5Ou0X4uW
¢/VGpOn6NKByhXIBbo22FME4xQ8aw=",
"body": {

"blockHash":
"ab9366¢cf63881228863c884527fceefabc9ad2e375aa0bebf7117175¢7d3f5",

"height": 8,

"preBlockHash":
"fc83¢306677925¢efee540b4d7b7ca73e06f144cae34c706f1101d6b395ada2da"

}
}

5.4.3.13 Chaincode event registration API

Chaincode event in a DApp can trigger the off-BSN system to process further transactions.
This interface is used to register the chaincode event to be monitored.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/chainCode/event/register

2. Call method: POST
3. Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
Header
1 user unique ID userCode String Y
2 DApp unique ID appCode String Y
Body
1 ChainCode chainCode | String Y
2 l({jeh;mcode event eventKey String Y
Chaincode event . . URL to .receive
3 notification URL notifyUrl String Y the monltored
chaincode event
4 Attached additional attachArgs | String N
parameters
Example:

65

Blockchain-based Service Network User Manual

5.

{"header": {"appCode":"CL20191107112252","userCode":"lessing"},"body": {"attachArgs
":"name=TOM&age=20","chainCode":"cc_bsn_test 00","eventKey":"test01","notifyUrl":
"http://192.168.6.128:8080/api/event/notifyUrl"},"mac":"MEUCIQC;jzPr4dKZVild2Vm5Y
gcunOXThImQK2QfWcRnY Ck+jOzglgDW60Hca7/249M43p2 ElwiMNbuejdwAnyW50
wiMqiWCQ="}

Response parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value | mac String Y

header

1 Response ID code int Y 0: suqcessful
-1: failed

2 &e:::;gie msg String Y

Body

1 | Event ID | eventld | String | Y |

Example

{ "header": { "code": 0, "msg":"Event Registration Successful" }, "body":

{ "eventld": "bd3391deedbe44a7ad5b7f80ce59abfa" }, "mac":

"MEQCIENLpj2RIMRL100veMXs0X5rwfSjB/U7kMg+76GjEPNJAiIBIU0/Eyj49uXTPrz

RWOm4rJONQIkZnDMPbyalxoj XwrA=="}

5.4.3.14 Block event registration API

Block event in a DApp can trigger the off-BSN system to process further transactions. This

interface is used to register the block event to be monitored.

1.

Interface address:

https://PCNGatewayAddress/api/fabric/v1/chainCode/event/blockRegister

Call method: POST
Signature algorithm: required and refer to Section 5.4.3.1

Call parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
Header
1 user unique 1D userCode String Y
2 DApp unique ID appCode String Y
Body
Chaincode event . . URL to .receive
1 . . notifyUrl String Y the monitored
notification URL
block event
5 Attached additional attachArgs | String N
parameters
Example:
{"header": {"userCode":"USER0001202007101641243516163","appCode":"app00

66

Blockchain-based Service Network User Manual

01202101191411238426266","tId":""},"mac":"MEUCIQCIsjKy/ee1qaYrltzCO1b
M{js0g0kPu8+YOCjbk3rPRAIgSfey Y vieoh8QciZPG4{fZQepaiyh7PmmWjYzFSq
yIT/c=","body":{"chainCode":"","eventKey":"","notifyUrl":"http://192.168.6.78:5
8011/v1/fabric/test","attachArgs":"a=1"}}

5. Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
1 Response ID code int Y 0: successful
P -1: failed
2 Response msg String Y
message
Body
1 | Event ID | eventld | String Y
Example
{
"header": {
"code": 0,
"msg": "success"
¥
"mac".

"MEUCIQC6PKsSqfkQGLrqi2vMpZzBP5beLhyP+{XVr8S5aqhaaglgaEtAnsuiub
ibYoYZzQ/8aGYErzm5rtU80j9520uHgCo=",

"body": {

"eventld": "002{0e1f0b0f4331ab541461547a38d6"

5.4.3.15 Chaincode and block event query API

Use this API to query the list of monitored chaincode and block events that have been registered.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/chainCode/event/query

2. Call method: POST
3. Signature algorithm: required and refer to Section 5.4.3.1

4. Call parameters

67

Blockchain-based Service Network User Manual

5.

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unique 1D userCode String Y

2 DApp unique ID appCode String Y

Example:

{"header": {"appCode":"CL20191107112252","userCode":"lessing"},"body": {},"mac":"M
EQCIANnJxvuKVeOu/bGOVYCjM3g3ctx TYIWkejYp4620kNIcAiBcOTGVAKF7xErL.2w1
PiwgfFjlu3Sszgyfzym/pEwRGxA=="}

Response parameters

1 Header header Map Y

2 Body body [Jbody Y Event List

3 Signature Value mac String Y

Header
0: Query

1 Response 1D code int Y su‘ccessful
-1: Query
failed

2 Response Message msg String Y

body

1 Event ID eventld String Y

. . Null if it’s a

2 Chaincode Event key | eventKey String N block event

3 %?;Eg:ggfﬁ?{ notifyUrl String Y

4 Attached additional attachArgs | String N

parameters

5 Creation Time createTime | String Y

6 PCN ID orgCode String Y

7 user unique 1D userCode String Y

8 DApp unique code appCode String Y

9 Chaincode ID chainCode | String N Null if it’s a
block event
Returns
“block” if
it’s a block

10 | Event type eventType | String N event; Null if
it’s
chaincode
event

Example

{ "header": { "code": 0, "msg":"Query Event Successful" }, "body":

[{ TeventKey": "test001", "notifyUrl":

"http://192.168.6.128:8080/api/event/notifyUrl", "attachArgs": "a=123\u0026b=456",

"eventld": "945ee631d26140118963ad3104¢81713", "createTime": "2019-11-18

14:22:59", "orgCode": "ORG1571365934172", "userCode": "lessing",

"appCode": "CL20191107112252", "chainCode": "cc_bsn_test 00" },

{ "eventKey": "test002", "notifyUrl":

"http://192.168.6.128:8080/api/event/notifyUrl", "attachArgs": "hahahhahhahahahah",

"eventld": "346617a493d84c6d8512b8dddad87811", "createTime": "2019-11-18

Blockchain-based Service Network User Manual

14:29:28", "orgCode": "ORG1571365934172", "userCode": "lessing",

"appCode": "CL20191107112252", "chainCode": "cc_bsn_test 00" },

{ T"eventKey": "test01", "notifyUrl":
"http://192.168.6.128:8080/api/event/notifyUrl", "attachArgs":
"name=Zhangsan\u0026age=20", "eventld": "bd3391deedbe44a7ad5b7{80ce59abfa",
"createTime": "2019-11-19 10:52:15", "orgCode": "ORG1571365934172",
"userCode": "lessing”", "appCode": "CL20191107112252", "chainCode":

"cc_bsn test 00" }], "mac":

"MEQCIEY XFMa8dfBrjy/sOH5JAoFIjROJBiw+7/daELUbF5eAiA7a6HvqqbOpv6vlkun
HGxCB1o5DoeuJFDOFM6kLoU34Q=="}

5.4.3.16 Remove chaincode and block event API

This interface is used to remove a chaincode event’s registration from the event list.

1.

5.

Interface address:

https://PCNGatewayAddress/api/fabric/v1/chainCode/event/remove

Call method: POST
Signature algorithm: required and refer to Section 5.4.3.1

Call parameters

No. | | Type | Required | Remarks |
1 Header header Map Y
2 Body body Map N
3 Signature Value mac String Y
header
1 user unique 1D userCode String Y
2 DApp unique ID appCode String Y
Body
1 | Event ID | eventld | String | Y |
Example:
{"header": {"appCode":"CL20191107112252","userCode":"lessing"},"body": {"eventld":"
bd3391deedbed4a7ad5b7f80ce59abfa"},"mac":"MEQCIE3/CLG5LxZZN7En7LZvzthajw
xHzpvDduXSsw4Tb1JFAIAXGJ4W VtyCKbtCasQGofCkge8NOgZDNPgJIdTCtCi2SQ=
="}

Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
0: remove
1 Response ID code int Y successful
-1: remove failed
2 E[e:essps Zzsee msg String Y
Example
{ "header": { "code": 0, "msg":"Remove Event Successful" }, "body": null, "mac":
"MEUCIQCaTFLIiY 7pPjkwemSsLXOth7k9bQj9Sblg+1nMVjkFA AlgUsizFO+f1+dxU3/
hPxjf/+na4qG6aQFftJ/IWGtMhIVI="}

69

Blockchain-based Service Network User Manual

5.4.3.17 Chaincode and block event notification API

This interface is implemented on the off-BSN system side. When the PCN gateway receives
the notification of a triggered event, it uses this interface to notify the off-BSN system about

the execution result.

After receiving the notification successfully, the off-BSN system returns a string containing
“success”, otherwise, the gateway will send the notification again at 3, 12, 27, and 48 seconds

respectively, for a total of five times.

1. Call method: POST

2. Signature algorithm: required and refer to Section 5.4.3.1

3. Call parameters

1 Header header Map Y
2 Body body Map N
3 Signature Value mac String | Y
header
1 user unique 1D userCode String | Y
2 DApp unique ID appCode String | Y
body
Null when the
1 Chaincode ID chainCode String | N block event
notification
2 PCN ID orgCode String | Y
3 Registered Event key | eventKey String | N
4 Registered Event ID | eventld String | Y
Additional
5 Registered Event attachArgs String | N parameters
parameters entered during
registration
The event name
in the chaincode,
6 Monitored event key | eventName String | N null when the
block event
notification
. Null when the
7 Current .Chalncode txId String | N block event
transaction Id) .
notification
8 \l:/lai)lrllétored event payload String | N
9 Current Block Height | blockNumber | Long | Y
Off-BSN system
uses this value to
judge if the
Response random . notification %S
10 . nonceStr String | Y already received.
string . .
This string
remains the same
at the repeated
notifications.

70

Blockchain-based Service Network User Manual

Null when
11 Previous hash previousHash | String | N chaincode event
notification

Example:

Chaincode event nofitication

{"header": {"userCode":"lessing","appCode":"CL20191107112252"},"body": {"cha
inCode":"cc_bsn_test 00","orgCode":"ORG1571365934172","eventKey": "test:\\S
{32}","eventld":"2964a0f60b3e460f834618b3664af2da","attachArgs":"abc=12321
1","eventName":"test:12345678123456781234567812345678","txId":"32fc10568
1820fa556b8a460efcle43a47daa864b959¢eal753abb4640f2dce49", "payload":"","b
lockNumber":74," nonceStr":"522¢8061b5e84837bad72ca08c6a353f"},"mac":"ME
QCIDU4tROyjLtvD1b8TTbWWAICPuUbmdPAEUXWRRgVn7kIAiA58jeSu/7x
DuRPcgeUWL3nBImouUGQ6dGKIMmD7Jm08g=="}

Block event notification

{"header": {"userCode":"USER0001202007101641243516163","appCode":"app00
01202101191411238426266"},"body": {"orgCode":"ORG2020041114171692360"
,"eventld":"8746bb9ale854c9f8b3710f5a63f7c¢59","attachArgs":"a=1","previousH
ash":"022281f6089¢3684501251775166b6b0afd18al76ec98a835¢cb5d09aff0d4950
" "blockNumber":12,"nonceStr":"79a7baa26c854caeb2e2e7abc0b7f07¢" },"mac":"

MEUCIQDiZrw{8fKG/3fuaVrsfTN3BKmLx+qnnEuuSaH{vIBbMQIgS+1qHKXe

VR24WXwOGu3Nze/tLLziQ0OLkjXaueYuOctM="}

4. The payload parameter in the message is not passed in Fabric 1.4.3, please refer to
https://github.com/hyperledger/fabric/blob/v1.4.3/core/peer/deliverevents.go#L251

For the specific code, if you need to use the payload parameter, you can get it as follows:
1) store the content to be passed through the event to the chain in the form of “key-value”.
2) pass the event name and the key splice in 1 as eventName, e.g.: eventkey key.

3) register the event with a regular registration, e.g. : eventkey [\s\S]*.

4) after receiving the event, parse the key according to the event name and call a query to
get the value.

5) if the amount of payload data to be passed is not large, it can be directly spliced to
enevtName, which has no length limitation.

5.4.3.18 Transaction status description

Under both Key Trust Mode and Public Key Upload Mode, the description of the returned
transaction status when the off-BSN system invokes the DApp chaincodes via PCN gateway
APIs are shown as follows:

0 Successful

-1 Block creation time out

1 Submitted data empty

2 Unusual response

3 Error in the submitted information
4

5

Error in the creator’s signature
Invalid “endorser” transaction

71

Blockchain-based Service Network User Manual

6 Invalid transaction settings

7 Unsupported transaction response
8 Error in the transaction ID

9 Duplicate transaction ID

10 Failed endorsement

13 Unknown transaction type

14 Cannot locate target chaincode

17 Expired chaincode

18 Conlflict in chaincode version

254 Invalid transaction

255 Invalid transaction for other reasons

5.4.4 PCN Gateway FISCO API

A PCN gateway is deployed on each public city node (PCN) to receive off-BSN system
requests signed and verified by DApp access keys, then used to route the requests to the
corresponding FISCO BCOS-based DApp smart contracts. Invoking the PCN gateway is
realized by sending HTTP requests to each PCN gateway service. The gateway is responsible
for verifying user and application identities, and then uses these identities and smart contract
functions to process smart contract parameters then sends the smart contract transaction results
back to the off-BSN systems.

5.4.4.1 DApp Access Signature Algorithm

Whenever an off-BSN system sends requests to the PCN gateway, the HTTP request message
should be signed with the DApp participant’s DApp access private key. When the PCN
gateway receives the message with the digital signature, it will verify the authentication and
message integrity with the corresponding hosted or uploaded DApp access public key. The
gateway will only process the request message further after the verification is passed.

1. Assemble signature string

Convert the request parameters into a joined string according to the order of the parameter table,
of which, the call parameter prioritises joining UserCode and AppCode of the Header and the
response parameter prioritises joining code and msg. Then join the parameters in the Body
according to the order of the parameter tables in the definition of APIs.

2. Different type conversion formats

Type Rule Example Result
String No conversion abc abc
irg/mt64/lo Decimal conversion -12 -12

Decimal conversion; see notes
for values after decimal point

Bool Convert to “true” or “false” true true
Join according to parameter

Float 1.23 1.23

Array sequence and type {*“abc”,’xyz”} abcxyz
i\/[ap[key]va Join key and value according to a”1,7b7:2} alb2
ue parameter sequence
Convert the attributes in the
. object one by one according to “name”:”abc”,”’sec
Object the document in the above- ret”:123456} abc123456

described format

72

Blockchain-based Service Network User Manual

3. Signature rules

1. FISCO BCOS framework DApp using ECDSA (secp256k1) secret key algorithm

e Getting the Hash value: The converted string to be signed is required to be computed
with SHA256 algorithm with UTF-8 encoding.

e Sign the Hash value: The hash value and private key should be encrypted with ECDSA
(secp256k1) algorithm. In the processing of some programming languages (C#, Java),
if signed with SHA256 WithECDSA, which includes hash value computation, therefore,
the first step is not necessary.

¢ Encoding the signature result to Base64.
2. FISCO BCOS framework DApp using SM secret key algorithm

e Getting the Hash value: The converted string to be signed is required to be computed
with SM3 algorithm with UTF-8 encoding.

e Sign the Hash value: The hash value and private key should be encrypted with SM2
algorithm.

e Encoding the signature result to Base64.
4. Example

Parameters:

n.n

{"header": {"userCode":"user01","appCode":"app01"},"mac":"","body": {“userld”:’abc”, list
’7: [GEabC”,,’Xyz”]} }

Result: user0lappOlabcabcxyz

5.4.4.2 Key and Certificate Modes
1. Key Trust Mode

As described in chapter 5, DApp participants require two sets of key pairs to access the DApp:
DApp access key pair and user transaction key pair. Under the key trust mode, the pairs are
generated and hosted by BSN. The participants only need to download the private key (DApp
access key) from the BSN portal.

DApp Access Key Pair: After the participant has successfully joined the DApp, BSN will
generate one key pair (private and public keys) that corresponds to the DApp’s framework
algorithms under the Key Trust Mode. The participant can download the private key from “My
Certificates” section of the BSN global portal and use it to sign the request message sent to the
PCN gateway. The gateway will use the hosted public key from the generated key pair to
validate the signature.

User Transaction Key Pair: This is the identity of a participant to invoke the chaincodes. Under
the Key Trust Mode, after successfully joining the DApp, a participant’s user transaction key
pair will be created automatically by BSN by default. The participant’s off-BSN system can
use the participant’s UserCode to invoke the certificate generated by the key pair. If the
participant’s off-BSN system has multiple sub-users, the off-BSN system can invoke the
gateway’s “User Registration API” to register the sub-users and generate a separated user
transaction key pair for each sub-user. The sub-users can use their own UserCode to connect
to the DApp to execute smart contract transactions.

73

Blockchain-based Service Network User Manual

Transaction process:

2.

Off-BSN System PCN Gateway

1. Invoking "User Registration” API;tII
———————— 1.1 Return User information———————

2. Invoking "Key Trust Mode Invoking
chaincode" API I
———————— 2.1 Return transaction result ————-—-—-

3. Invoking "Retrieving Transaction
information™ API

Public Key Upload Mode

As described in chapter 5, DApp participants require two sets of key pairs to fully access the
DApp: DApp access key pair and user transaction key pair. With public-key upload mode, the
key pairs are generated and stored locally by the participants. The participants only need to
upload the public keys to BSN via the BSN portal or gateway APIs.

DApp Access Key Pair: The DApp participant must generate the DApp access key pair
locally according to the DApp framework algorithm after successfully joining the DApp.
The participant stores the private key locally and uploads the public key to BSN via the
BSN global portal. The participant’s off-BSN system uses the private key to sign the
transaction messages when invoking the PCN gateway. The PCN gateway will use the
public key uploaded by the participant to verify the signature and validate the legality of
the transaction.

User Transaction Key Pair: This is the identity of a participant to invoke the chaincodes.
Under the Key Trust Mode, the participant must generate the user transaction key pair
locally and use the public key to generate the “public key registration application”, then
from the participant’s off-BSN system to submit the registration application to BSN by
invoking the “Public Key Upload Mode user certification registration” API on the PCN
gateway to receive the public key certificate. If the off-BSN system has sub-users, it should
first invoke the “User Registration” API to register the sub-users before sending their public
key registration applications.

Transaction process:

74

Blockchain-based Service Network User Manual

Off-BSN

2. Invoking "User Certificate
registration” API I '
————————— 2.1 Return certificate info - - - - - - — -
3. Assemble

Transaction
Parameters

4. Invoking "Public Key Upload Mode
Invoking Chaincode” API

———————— 4.1 Return transaction result - ——-—--—

5. Invoking "Retrieving Transaction
information” API

———————— 5.1 Return transaction info- === ——~~~

5.4.4.3 Get DApp information API

Invoke this interface to get basic DApp information; this interface can be used by transactions
in Public Key Upload Mode.

1. Interface address:

https://PCNgatewayAddress/api/app/eetApplnfo

2. Call Method: POST
Signature Algorithm: Not Required

4. Call parameters

1 Header header Map Yes

2 Body body Map No

3 Signature value mac String Yes

Header

1 User unique ID userCode String Yes

2 DApp unique ID appCode String Yes

- | | —
Example:

{"header": {"userCode":"USER0001202004151958010871292","appCode":"app0001202
004161020152918451","tId":""},"mac": "","body": {} }

75

https://pcngatewayaddress/api/app/getAppInfo

Blockchain-based Service Network User Manual

5. Response parameters
[No. [Fieldname [Field [Type [Required [Remarks |
1 Header header Map Y
2 Body body Map Y
3 Signature value mac String | Y
Header
. 0: successful
1 Response ID code int Y 1: failed
2 Response Message | msg String | Y
Body
1 DApp name appName String | Y
2 DApp type appType String | Y
DApp encryption 1: Key Tmst Mode
3 key type caType Int Y 2: Public Key
Upload Mode
4]]?App algorithm algorithmTy Int v é SM2
ype pe ECDSA(secp256r1)
5 City MSPID mspld String | Y
Fabric
corresponding
6 DApp chain name | channelld String | Y channelld, fisco
corresponding
groupld
Example:
{
"header": {
"code": 0,
"msg": "Transaction Successful"
s
"mac":
"MEUCIQDE9zvOE/w4V/ILG6WUCFP08a7NDCAtX/10Z0cCyY4gIQIgUTYWsFTA1
KE88gE6452jKnnVBrhznGVOV2HPMCbNh8A=",
"body": {
"appName": "sdktest",
"appType": "fabric",
"caType": 2,
"algorithmType": 2,
"mspld": "OrgbNodeMSP",
"channelld": "app0001202004161020152918451"
}
}

5.4.4.4 User Registration API

After a participant has successfully joined in a FISCO BCOS (FISCO) DApp, his/her off-BSN
system can invoke this interface to generate the user account and user address to execute smart
contract transactions.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/user/register

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

76

Blockchain-based Service Network User Manual

4. Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID | appCode String Y

body

1 user name userld String Y Registered
user name

Example:

{

"header": {"appCode":"CL1881038873220190902114314","userCode":"newuser"},

"body":

{

“userld”:’abc”

s

"mac":"MEQCIBRhaM2szckW19N9qcqnaY XOXGQw7S{II9DIRvxcI3YVAiBt4 XeNs+

EUjhBNSr3]jLRPZucsuGHx{jt9RiaNIQS8cA=="}

signature value:

5. Response parameters

1 Header header Map Y
2 Body body Map Y
3 \Sfl aglrlllaeture mac String Y
header
0: authentication
. successful
1 Response ID | code int Y _1: authentication
failed
Response . if code=0 then can
2 Mespsage msg String N be null
body
User . If code is not 0,
! information data [Istring N then leave blank
data
1 User ID userld String Y
2 User Address | userAddress | String Y
Example
{
"header": {
"code": 0,
"msg": "Transaction Successful"
’s
"mac":
"MEQCIEISVKMyJUXIs2Hf8TLoPXjZLT4/L.2wyXoddgTnZdqRsAiBxEBMeCOZ8M97
OCRUAMZNMcL974vhzjOS/tk8/wbgbsA==",
"body": {
"userId": "100003",
"userAddress": "0x14647a48303b5e1¢77934583883ebc327ba3b297"
}

77

Blockchain-based Service Network User Manual

L

5.4.4.5 Invoke Smart Contract API in Key Trust Mode

For the FISCO DApps in Key Trust mode, when the off-BSN system invokes the smart contract
via PCN gateway, it is required to include the parameters in the request. The gateway will
return the response message from the chaincode.

1. Interface address:
https://PCNGatewayAddress/api/fiscobcos/v1/node/reqChainCode

Note: After a participant has successfully joined in a FISCO DApp service, the participant can
view and download the DApp’s configuration parameters which are used for off-BSN systems
to connect to this DApp’s smart contracts, including the PCN gateway address and Dapp access
keys, as shown below:

nam Blockchain-based
Service Network

Published Services

Certificate Mode

USER0003202006082324013815938

opCode: appO03202007061026339883125

d77498a0967349319454ch3a8d 757893

e: applOD3202007061026339883125

Chaincode Name

2. Call Method: POST

3. Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

(@ UserManusl [Documentstion (] Message Center 2, Profile

FUNC

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
1 user unique ID | userCode String Y
2 DApp unique ID | appCode String Y
Body
1 User ID userld String Y \ljizg;?;e_rleigi er ID
2 Smart Contract contractName | String Y

Name
3 Function Name | funcName String Y

: convert array type

4 Function funcParam string N to json string P

Parameters

format

78

Blockchain-based Service Network User Manual

5.

Example:

bs="}

{"header": {"appCode":"cl0006202003181926573677572","userCode":"USER00062020
03181951281835816"},"body": {"contractName":"HelloWorld","userld":"100003","func
Name":"set","funcParam":[\"abc\"]},"mac":"MEUCIQDTFe2Gerdf7YJrG1al Yt99MOZ
Q3T11GpsXdNmMFV7WuTglgSkZ19abUhAJbMrIMBoD8N7f26xhpQRuR4vNAfY7EE

Response parameters

1 Header header Map |Y
2 Body body Map |Y
3 Signature Value | mac String | Y
header
0: authentication
. successful
1 Response ID code int Y _1- authentication
failed
Response . if code=0 then can be
2 Mespsage msg String | N null
Body
1 Invoke Type constant Bool | N
ue . If Constant is true, this
2 i?lfozqation querylnfo String | N field has value.
Transaction . If Constant is false,
3 hash txId string | N this field has value and
as . .
is valid.
If Constant is false,
4 Block HASH blockHash String | N this field has value and
is valid.
If Constant is false,
5 Block Number blockNumber | Int N this field has value and
is valid.
If Constant is false,
6 Gas Used gasUsed Int N this field has value and
is valid.
If Constant is false,
this field has value and
Transaction ' is valid..OXO means
7 status String | N transaction successful,
Status
status value refer to
transaction receipt
status in 7.3.9
If Constant is false,
8 From account from String | N this field has value and
is valid.
If Constant is false,
9 To account to String | N this field has value and
is valid.
If Constant is false,
10 Input input String | N this field has value and
is valid.
If Constant is false,
11 Ouput output String | N this field has value and

is valid.

79

Blockchain-based Service Network User Manual

Example
|

5.4.4.6 Invoke Smart Contract API Public Key Upload Mode

When the off-BSN system invokes the node gateway, it should follow the API descriptions to
add the corresponding parameters. After invoking the node gateway, the node gateway returns
the execution result of the smart contract. In the transaction of Public Key Upload mode, the
private key of the transaction on the chain is generated and saved by the user. Then the client
performs the assembly and signature of the data locally. The signed data is uploaded to the
node gateway, which forwards the data to the corresponding blockchain node to initiate the
transaction request. Data assembly in this pattern requires information such as the contract ABI,
which is compiled when developing the contract, and the contract address, which is available
on the application details page. In the SDK of the gateway, the assembly method of the data on
the link has been implemented, which can be directly called.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/trans

nam Blockchain-based (1) User Manual [@ Documentation (=] Message Center 2, Profile
Service Network

SN City Nodes Certificate Mode Access Address

e: apph003202007061026339883125

User Center Chaincode Name Chait c Function Name. FUNC

Note: After a participant has successfully joined in a FISCO DApp service, the participant can
view and download the DApp’s configuration parameters which are used for off-BSN systems
to connect to this DApp’s smart contracts, including the PCN gateway address and Dapp access
keys, as shown below:
2. Call Method: POST

Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header

1 user unique ID | userCode String Y
2 DApp unique ID | appCode String Y
Body

1 | Smart Contract | contractName | String | Y

80

Blockchain-based Service Network User Manual

5.

Name

Transaction .
2 Data transData String Y
3 Contract address | contractAddress | String N
4 Contract ABI contractAbi String N
Example:

Contract ABI"}}

{"header": {"userCode":"USER0001202006042321579692440","appCode":"app0001202
006042323057101002","tId":""},"mac":"MEUCIQCrjleRVStluwFFGkr37b VM8&pF0Jg
AWb40mKEBc5HbpjglgEzXRIgG+Q7obwuD2MY4EH09sIsI1 W71 M+aQKOfAN3wU
=""body":{"contractName":"BsnBaseContractk1","transData":"0xf9016fa008d8ebcb4b
1£8205fd7883aa3ce9b9c844424070e55a3af6a5das5d7¢e97d287385051f4d5¢0083419¢ce0
7794866aefc204b88fdc3e45b908fd43d76667d717680b8e4ebf3b24f0000000000000000
006000000000000000000000000
005000000000000000000000000000000
00000000000000000000000000000000200000000000000000000000000000000000000
00000000000000000000000000573303630340000000000000000000000000000000000
000
0000000000002616100
000000018187801ba0324efc9e17f1d31d95535¢51030835605601836931945d03fb69ach
6fd2046b5a05fa61574183b3b753¢9fe40649a08c2a497af1cd804e08fed2b153af2026723"

"contractAddress":"0xe2d0d414d436d8be9d52e2f40e6dd24a63faa638","contractAbi":"

Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
0: authentication
. successful
1 Response ID code int Y _1- authentication
failed
Response . if code=0 then can be
2 Mespsage msg String N null
Body
1 Invoke Type constant Bool N
ue . If Constant is true,
2 Slfognation querylnfo String N this field has value.
Transaction . If .Constant is false,
3 txId string N this field has value
hash : .
and 1s valid.
If Constant is false,
4 Block HASH blockHash String N this field has value
and is valid.
If Constant is false,
5 Block Number | blockNumber | Int N this field has value
and is valid.
If Constant is false,
6 Gas Used gasUsed Int N this field has value
and is valid.
Transaction . If Constant is false,
7 Status status String N this field has value

81

Blockchain-based Service Network User Manual

and is valid. 0x0
means transaction
successful, status
value refers to
transaction receipt
status in 7.3.9

If Constant is false,
8 From account from String N this field has value
and is valid.

If Constant is false,
9 To account to String N this field has value
and is valid.

If Constant is false,
10 Input input String N this field has value
and is valid.

If Constant is false,
11 Output output String N this field has value
and is valid.

Example

5.4.4.7 Get Transaction Receipt API

After the smart contract executes one transaction, this interface can be used to get the
transaction receipt information according to the transaction hash value.

1. Interface address:
https://PCNGatewayAddress/api/fiscobcos/v1/node/getTxReceiptByTxHash

2. Call Method: POST
Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique 1D userCode String Y

2 DApp unique ID appCode String Y

body

2 | Transaction Hash | txHash | string Y

Example:

{"header": {"appCode":"cl0006202003181926573677572","userCode":"USER0006202003181951
281835816"},"body": {"txHash":"0x755{3e¢7833778f674e1b025f513f05722ba7248be43a3c9168b8
80847814021a"},"mac":"MEY CIQCe6s19zqspsy 1bS6Ka9Q8O+pE7TEDWdsWj4UBSg6FM7Alh
Alrud/EoxnURQcDc47iwTdh70dxJEJPE+raK9UaHjNal"}

signature value:

5. Response parameters

1 Header header Map Y

82

Blockchain-based Service Network User Manual

2 Body body Map Y
3 Signature Value | mac String Y
header
0: authentication
. successful
1 Response ID code int Y _1: authentication
failed
Response . if code=0 then can
2 Meszage mse String N be null
Body
Transaction . If code 1s not 0,
! Receipt Info txld string N then leave blank
Block HASH blockHash
Block Number blockNumber
Gas Used gasUsed
From account from
To account to
irgggs(siontract contractAddress
Example
{
"header": {
"code": 0,
"msg": "Transaction successful"
}s
"mac":
"MEUCIQCUlhnvH9a4HN/YITf40WgTuHmmz6qMEO8914effHdcIwlgStdeb/dVplhn3/FoCjeSc
VRyiEUhpkbze9bVm1gaXqs=",
"body": {
"blockHash":
"0x199eca276b60473dd65f8b36641684456694b419d89ef41b4953a9cdac848305",
"gasUsed": 2154887,
"blockNumber": 1,
"txId": "0x8ee0c68e222742b5b70878265d3fdbd3a8e0d549dad42a298a4ae872cadfbfd89",
"contractAddress": "0x20453db36¢492fa49da9fab1b80db7fa5f46b01e",
"from": "0x08ac3132a6¢7e6ca5a7fbaf0521bb8b6f370ed35",
"to": "0x00"
}
}

5.4.4.8 Get Transaction information API

After the smart contract executes one transaction, this interface can be used to get the
transaction detailed information according to the transaction hash value.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/getTxinfoByTxHash

2. Call Method: POST
Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

83

Blockchain-based Service Network User Manual

S.

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

Body

1 | Transaction HASH | txHash | string | Y

Example:

{"header": {"appCode":"cl0006202003181926573677572","userCode":"USER0006202003181951
281835816"},"body": {"txHash":"0x755f3¢7833778f674e1b025f513f05722ba7248be43a3¢c9168b8
80847814021a"},"mac":"MEUCIQDDQudQBvHkI5tlpeTDGKQA+LPRMTA2k9u7hCZAY Vobv
QIgNseUfaVw8d/Lx0oPPWyQS0204EUt6wmEISgtnTcUO7k="}

Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
0: authentication
. successful
1 Response ID code int Y _1- authentication
failed

Response . if code=0 then can be
2 Me sps age msg String N null
Body

I"{Irzrésgctlon txId String

Block HASH blockHash String

Block Number | blockNumber | Int

Gas Used gasUserd Int

From account from String

To account to String

value Int
input String
Example
{
"header": {
"code": 0,

"msg": "Transaction Successful"
}s
"mac":
"MEQCIBMqntmqQqZXkBbrLhmXEcuOqTG4Y WvIfGIJmebzEDbzc AIAKKHutOMBShqpSAE08
ts2MEQCIBMgntmqQqZXkBbrLhmXEcuOqTG4Y WvlfGImebzEDbzcAiIAKKHutOMBShqpSAE
08ts2+OBIRmEEbedjihixSFZZvrw==",
"body": {
"blockHash":
"0x199eca276b60473dd65f8b36641684456694b419d89¢f41b4953a9cdac848305",

".

84

Blockchain-based Service Network User Manual

"input":
"0x60806040523480156200001157600080£fd5b506110016000806101000a81548173 fiffffffffff
FEFEerrerr02 19169083 7 3 ft et ererrerf16021790555060008090549061
010002900473 ettt T 1 673 Attt e e e rerrerf1 663c92a780
16040805190810160405280600681526020017f7456261736500000000000000000000000000000
000000000000000000000008152506040518263 fftffff167¢c0100000000000000000000000000000
0000000000000000000000000000281526004016200010191906200024a565b60206040518083038
1600087803b1580156200011¢57600080fd5b505af115801562000131573d6000803e¢3d6000fd5b50
5050506040513d601£1960118201168201806040525062000157919081019062000174565b506200
02f4565b60006200016¢8251620002a3565b905092915050565b6000602082840312156200018757
600080fd5b600062000197848285016200015¢565b91505092915050565b6000620001ad82620002
98565b808452620001¢3816020860160208601620002ad565b620001¢e81620002¢3565b60208501
0191505092915050565b6000601382527f62617365516b65792¢626173655f76616¢7565000000000
000000000000000006020830152604082019050919050565b60006007825271626173655{6964000
0006020830152604082019050919050565b6
0006060820190508181036000830152620002668184620001a0565b9050818103",

"gasUsed": 100000000,

"blockNumber": 1,

"txId": "0x8ee0c68e222742b5b70878265d3fdbd3a8¢0d549dad2a298a4ae872cadfbfd89",

"from": "0x08ac3132a6¢7e6ca5a7fbaf0521bb8b6f370ed35",

"to": "0x00",

"value": 0

5.4.4.9 Get Block Information API

Corresponding block information can be queried according to block number or the block hash.
The block number and block hash cannot simultaneously be blank. When neither is blank, the
block number will be invoked in priority.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/getBlockInfo

2. Call Method: POST
3. Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
header
1 user unique ID userCode String Y
2 DApp unique ID | appCode String Y
Body
When null,
1 Block Height blockNumber | string N blockHash cannot
be null
. When null,
2 Block Hash blockHash String N blockNumber

85

https://pcngatewayaddress/api/fiscobcos/v1/node/getBlockInfo

Blockchain-based Service Network User Manual

S.

| | | | | cannot be null
Example:
{
"header": {"appCode":"CL1881038873220190902114314","userCode":"newuser"},
"body":
{
"blockNumber":22,
"blockHash":"0x{27ff42d4be65329a1e7b11365¢190086d9219836168d0379e92642786db7
ade"
!,
"mac":"MEQCIBRhaM2szckWI19N9qcqnaY XOXGQw7STII9DIRvxcI3YVAiBt4XeNs+E
UjhBNSr3[jLRPZucsuGHx{fjt9RiaNIQS8cA=="}
signature value:

Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
0: authentication
. successful
1 Response 1D code int Y _1- authentication
failed
Response . if code=0 then
2 Mefsage msg String N can be null
Body
Block HASH blockHash String Y
Block Number blockNumber | Int Y
Parent Block arentBlockHa)
HASH Eh String Y
Block Size blockSize Int Y
Timestamp in
Block Time blockTime Int Y millisecond
format
author String Y
Transaction . []Transaction
. transactions Y
Information Data
TransactionData
Transaction Id txId String Y
Block HASH blockHash String Y
Block Number blockNumber | Int Y
Gas Used gasUsed Int Y
from String Y
to String Y
value Int Y
input String Y
Example
{
"header": {
"code": 0,
"msg": "Transaction successful"
’s
"mac":

86

Blockchain-based Service Network User Manual

"MEQCIHX8SuEn/sDiPscd51i3X1GdseyggAyC209L92FjhzrfAiBLyFW/rgulLkqz/Lz62Vt
X3m7Y InHqcFqcNdM7WqOwGLQ==",
"body": {

"blockHash":
"0x199eca276b60473dd65{8b36641684456694b419d89¢f41b4953a9¢cdac848305",

"blockNumber": 1,

"parentBlockHash":
"0xa6886f12¢¢91470e35546432413ed372615f8d4c23fa82e¢8381b3e5b31219d4c",

"blockSize": 0,

"blockTime": 1587125168039,

"transactions": [

{

"txId":
"0x8ee0c68¢222742b5b70878265d3fdbd3a8e0d549dad2a298a4ae872cadfbfd89",

"blockHash":
"0x199eca276b60473dd65f8b36641684456694b419d89ef41b4953a9cdac848305",

"blockNumber": 1,

"gasUsed": 100000000,

"from": "0x08ac3132a6¢c7e6ca5a7fbaf0521bb8b6f370ed35",

"to": ",

"value": 0,

"input":
"0x60806040523480156200001157600080fd5b506110016000806101000a815481 73 ffftfftf
AT errer02 19169083 7 3 fHtt et rrererfrfrere16021790555060
00809054906101000a9004 7 3 fEttftrt AT AT AR 673 fr e eereeree
1 663¢92a78016040805190810160405280600681526020017f745£6261736500000
0008152506040518263ftffffff167c0
10002815260040162000
10191906200024a565b602060405180830381600087803b1580156200011¢57600080fd5b5
05af115801562000131573d6000803¢3d6000fd5b505050506040513d601£19601182011682
01806040525062000157919081019062000174565b50620002f4565b60006200016¢825162
0002a3565b90509291505056556000602082840312156200018757600080£fd5b6000620001
97848285016200015e565b91505092915050565b6000620001ad8262000298565b80845262
0001¢3816020860160208601620002ad565b620001ce81620002e3565b6020850101915050
92915050565b60006013825271626173655t6b65792¢626173655f76616¢756500000000000
0000000000000006020830152604082019050919050565b6000600782527{6261736551696
40060208301526040820190509
19050565b60006060820190508181036000830152620002668184620001a0565b905081810
360208301526200027b8162000213565590508181036040830152000000"

H
]
}
}

5.4.4.10 Get DApp Block Height API

This interface is used to get block height in a DApp.

1.

Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/getBlockHeight

Call Method: POST

Signature algorithm: required and refer to Section 5.4.4.1

87

https://pcngatewayaddress/api/fiscobcos/v1/node/getBlockHeight

Blockchain-based Service Network User Manual

4. Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

body

Example:

{"header": {"appCode":"cl0006202003181926573677572","userCode":"USER000620200318195
1281835816"},"body": {},"mac":"MEQCIHb207hb0apDukOQBXkZftETsizDBaftnHxO9A9ux5
EtAiABuiFrVYPWTSFiU+Wd9HpXF/AJhOYh2SXtL6h98mdeZw=="}

signature value:

Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
0: authentication
. successful
1 Response ID code int Y _1- authentication
failed
’ Response msg String N if code=0 then
message can be null
Body
. . If code not 0, then
1 Block Height data string N Jeave blank
Example
{
"header": {
"code": 0,
"msg": "Transaction Successful"
,
"mac":
"MEQCICtCOdv4ZL72M3Wo0A9INnAei2P0/PpKjlgl0Y 5qeuzgb1uAiA9D3TcB/4b2RMu
NwVq+X0vgiglHIM5SNBhoTJIPROgCPMA==",
"body": {
"data": "4"
H
}

5.4.4.11 Get Total Number of DApp Transactions API

This interface is used to get the total number of transactions in a DApp.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/getTxCount

88

https://pcngatewayaddress/api/fiscobcos/v1/node/getTxCount

Blockchain-based Service Network User Manual

2. Call Method: POST
Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

body

Example:

{"header": {"appCode":"cl0006202003181926573677572","userCode":"USER000620200
3181951281835816"},"body": {},"mac":"MEQCIBRhaM2szckW19N9qcqnaY XOXGQw7
STII9DIRvxcI3YVAiBt4XeNs+EUjhBNSr3[jLRPZucsuGHx{jt9RiaNIQS8cA=="}
signature value:

5. Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
0: authentication
. successful
1 Response ID code int Y _1- authentication
failed
Response . if code=0 then can
2 Mespsage mse String N be null
Body
1 Transaction data string N If code not 0, then
Information leave blank
Example
{
"header": {
"code": 0,
"msg": "Transaction Successful"
}s
"mac":
"MEQCIGgXINn3B9d/hC/ow0lJvi5eKDjS9QbZRFdrCqcUeNCgAiApl4jkwhTY33qgevl
RwsJ3veDBKXokvliSe3ck7SKlxmg==",
"body": {
"data":
"{\"txSum\":5,\"blockNumber\":5,\"txSumRaw\":\"0x5\",\"blockNumberRaw\":\"0x5\" } "
}
}

5.4.4.12 Get Total Number of Block Transactions API

This interface is used to get the total number of transactions inside a block according the block
number in a FISCO DApp. The block number cannot be null.

Blockchain-based Service Network User Manual

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/node/getTxCountByBlockNumber

2. Call Method: POST
Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

body

2 | Block number | blockNumber | string | Y |
Example:

{

"header": {"appCode":"CL1881038873220190902114314","userCode":"newuser"},
"body":

{

"grould":1,

"blockNumber":22,

’s

"mac":"MEQCIBRhaM2szckWI9N9qcqnaY XOXGQw7S{II9DIRvxcI3YVAiBt4XeNs+EU
jhBNSr3ljLRPZucsuGHxfjt9RiaNIQS8cA=="}

5. Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
0: authentication
1 Response ID code int Y successful
-1: authentication failed
) Response msg String N if code=0 then can be
message null
Body
Block total . If code not 0, then leave
1 count of data string N
. blank
transactions info
data
Example
"header": {
"code": 0,
"msg": "Transaction Successful"
|2
"mac":

"MEUCIQCMFbVhfHIX8pJ ImNI3 Y pzKIBcXCpfmf2 AniF/42ak9EwIgTWDEF+xW5139
ZDUnDSSSc8Zv8J1glEfizpl 6eW/Rn4=",

90

Blockchain-based Service Network User Manual

"body": {
"data": " l n

}

H

5.4.4.13 Smart Contract Event Registration API

Smart contract event in a DApp can trigger the off-BSN system to process further transactions.
This interface is used to register the smart contract event to be monitored.

1. Interface address:

https://PCNGatewayAddress/api/fiscobcos/v1/event/register

2. Call method: POST
Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

1 Header header Map Y

2 Body body Map Y

3 Signature Value mac String | Y

Header

1 user unique ID userCode String | Y

2 DApp unique ID appCode String | Y

Body
1.Block

1 Event Type eventType String | Y generation event
2.Contract event
EventType is 1 then
can be null;
EventType is 2 then

2 Contract address contractAddress | String | N EventType and
contract Name
cannot be null at the
same time
EventType is 1 then
can be null;
EventType is 2 then

3 Contract name contractName String | N EventType and
contractName
cannot be null at the
same time

4 Notification URL notifyUrl String Y

5 Attached parameters | attachArgs String | N

Example:

{"header": {"userCode":"USER0001202006042321579692440","appCode":"app000120200604232

3057101002","tId":""},"mac":"MEUCIQCMP1T0ZS5¢8594kYZ/8y5X feyjRyUrPFpelQMES3SGp

QIgO8b608Kk/qpNTolvbNTwyAYNaw6HBi9OKkAH8Rp23j8s=","body": {"eventType":1,"contra

ctAddress":"0x866aefc204b8f8fdc3e45b908fd43d76667d7176","contractName":"BsnBaseContract

k1", "notifyUrl":"http://127.0.0.1:18080","attachArgs":"abc=123"} }

5. Response parameters

91

Blockchain-based Service Network User Manual

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
1 Response 1D code int Y 0: sugcessful
-1: failed
2 i/{e:sp:;gsee msg String Y
Body
1 Event ID eventld String Y Null when the code
isnot 0
Example
{
"header": {
"code": 0,
"msg": "Transaction successful”

5,

"mac":
"MEUCIQDYSTwYhh6EDHTS5Z7ukcqXWILM;jZW6WPnrv8Xt14RuH2 AlgIwaSK7NK4/TThzs8
z6 VIkpNNJU+dzA XeypFmfjkru88=",

"body": {

"eventld": "XXXXXXXXXXXXXXXXXXXXXXXXXX"

}

H

5.4.4.14 Smart Contract Event Query API

Use this API to query the list of monitored smart contract events that have been registered.

1. Interface address:

https://PCNGatewayAddress/api/fiscobocs/v1 /event/query

2. Call method: POST
Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unique 1D userCode String Y

2 DApp unique ID appCode String Y

Example:

{"header": {"userCode":"USER0001202006042321579692440","appCode":"app000120200604232
3057101002","tId":""},"mac":"MEUCIQC2NTuUlsxQSWPpZwwhJK9zXEMaeYZC04ArOP5Twy
pSAQIgFvZrskasuLiYfOGxd1FOTCetWHIfENg8BCiY fNS1xGk=" }

5. Response parameters

92

https://pcngatewayaddress/api/fiscobocs/v1%20/event/query

Blockchain-based Service Network User Manual

1 Header header Map Y
2 Body body Map Y
3 Signature Value mac String Y
Header
0: Query
1 Response ID code int Y successful
-1: Query
failed
2 Response Message | msg String Y
body
1 Block generation blockEvent [TblockEvent v Null When the
event code is not 0
2 Contract event contractEvent E]contractEven Y
blockEvent
L[Doskemerion 0T [ring | Null wen
2 App code appcode String Y
3 User code userCode String Y
4 Notification URL notifyUrl String Y
5]l:‘at;flfr?er?eergt attachArgs String N
6 Create time createTime String Y UTCtime
contractEvent
1 :‘1;:;11: generation eventld string Y
2 App code appcode String Y
3 User code userCode String Y
4 Notification URL notifyUrl String Y
5 Attachment attachArgs String N
parameters
6 Create time createTime String Y UTCtime
7 Contract address contractAddress | String Y
Example
{
"header": {
"code": 0,
"msg": "Transaction succssful”
}s
"mac":
"MEUCIQCQ/RjmIVKLKZw6jcLKBPh1BwK4EIQE001vUAKPVqIHTglgXUQ7Bn+y8
D8xQxYUwtZOoh/bpteAPCUtKXZeAiN7cMU=",
"body": {
"blockEvent": [
{
"eventld": "ba537419953e4e219ceb0fe26ad5e125",
"appCode": "app0001202006042323057101002",
"userCode": "USER0001202006042321579692440",
"notifyUrl": "http://127.0.0.1:18080",
"attachArgs": "abc=123",
"createTime": "0001-01-01 00:00:00.000 +0000 UTC"

93

Blockchain-based Service Network User Manual

}
I,

"contractEvent": [

"eventld": "ba537419953e4e219ceb0fe26ad5e126",

"appCode": "app0001202006042323057101002",

"userCode": "USER0001202006042321579692440",

"notifyUrl": "http://127.0.0.1:18080",

"attachArgs": "abc=123",

"createTime": "0001-01-01 00:00:00.000 +0000 UTC",
“contractAddress”:” 0x866aefc204b818fdc3e45b908fd43d76667d7f76”

}
]

5.4.4.15 Remove Smart Contract Event API

This interface is used to remove a smart contract event’s registration information from the event
list.

1. Interface address:

https://PCNGatewayAddress/api/fabric/v1/chainCode/event/remove

2. Call method: POST
Signature algorithm: required and refer to Section 5.4.4.1

4. Call parameters

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unique 1D userCode String Y

2 DApp unique ID appCode String Y

Body

1 | Event ID | eventld | String Y |

Example:

{"header": {"appCode":"CL20191107112252","userCode":"lessing"},"body": {"eventld":"bd3391de
edbe44a7ad5b7f80ce59%abta"},"mac":"MEQCIE3/CLG5LxZZN7En7LZvzthajwxHzpvDduXSsw4
Tb1JFAIAXGI4WVtyCKbtCasQGofCkge8NOgZDNPgJIdTCtCi2SQ=="}

5. Response parameters

1 Header header Map Y
2 Body body Map Y
3 Signature Value | mac String Y
header
. 0: remove
Response ID code int Y successful

Blockchain-based Service Network User Manual

-1: remove failed

Response .
2 Message msg String Y
Example

{"header": {"code": 0, "msg": "Remove Event Successful"}, "body": null, "mac":
"MEUCIQCaTFL1iY 7pPjkwemSsLXOth7k9bQj9Sblg+1nMVjkFA AlgUsizFO+f1+dx U3/
hPxjf/+na4qG6aQFftJIWGtMhIVI="}

5.4.4.16 Smart Contract Event Notification API

This interface is implemented on the off-BSN system side. When the PCN gateway receives
the notification of a triggered event, it uses this interface to notify the off-BSN system about

the execution result.

After receiving the notification successfully, the off-BSN system returns a string containing
“success”, otherwise, the gateway will send the notification again at 3, 12, 27, and 48 seconds

respectively, for a total of five times.

1. Call method: POST

2. Signature algorithm: required and refer to Section 5.4.4.1

3. Call parameters

1 Header header Map Y

2 Body body Map N

3 Signature Value mac String Y

header

1 user unique ID userCode String Y

2 DApp unique ID appCode String Y

body

1 Registered Event ID | eventld String Y

2 PCNID orgCode String Y
Additional

3 Registered Event attachArgs String N parameters

parameters entered during

registration
Off-BSN system
uses this value
to judge if the
notification is

4 Rgs ponse random nonceStr String Y alregdy .

string received. This

string remains
the same at the
repeated
notifications.

5 Event type eventType String Y

6 Event data eventData String Y

Example:

{"header": {"userCode":"USER0001202006042321579692440","appCode":"app000120200604232
3057101002"},"body": {"eventld":"5b5b865f8dc94ae59d215cf26aa81d69","orgCode":"ORG20200
41114171692360","appCode":"app0001202006042323057101002","attachArgs":"abc=123","nonc

95

Blockchain-based Service Network User Manual

nCZHvxthMFUWRkc="}

eStr":"52f080127ff045eb87¢21812d12cee40","eventType":1,"eventData":" {\"appld\":\"app000120
2006042323057101002\",\"blockNumber\":17\"eventType\":1,\"groupld\":135}"},"mac":"MEUCI
QD3Sp6xul4DHy/GOb9z3nH6kQisEzfXvZ/Hn/mfZXIAOglgYsISRfBKSIGt4FrmxET{IfR4A8Ve

5.4.4.17 Transaction Receipt Status

Under Key Trust Mode, the description of the returned transaction status when the off-BSN
system invokes the FISCO DApp smart contracts via PCN gateway APIs are shown as follows:

status(Decimal/ .
e i) message Explanation
0(0x0) None No Error
1(0x1) Unknown Unknown Error
2(0x2) BadRLP Invalid RLP Error
3(0x3) InvalidFormat Invalid Format Error
The length of smart contract exceeds gas
4(0x4) OutOfGaslIntrinsic limit/smart contract invoking parameters
exceed gas limit
5(0x5) InvalidSignature Invalid Signature Error
6(0x6) InvalidNonce Invalid nonce Error
7(0x7) NotEnoughCash Not enough cash Error
8(0x8) OutOfGasBase Parameters too long (RC version)
9(0x9) BlockGasLimitReached Gas limit reached Error
10(0xa) BadInstruction Bad Instruction Error
11(0xb) BadJumpDestination Bad Jump Destination Error
Out of gas to execute the smart contract/the
12(0xc) OutOfGas length c%f smart contract exceeds the limit.
13(0xd) OutOfStack Out of Stack Error
14(0xe) StackUnderflow Stack Under Flow Error
15(0xf) NonceCheckFail Nonce check failed Error
16(0x10) BlockLimitCheckFail Block limit check failed Error
17(0x11) FilterCheckFail Filter check failed Error
18(0x12) NoDeployPermission No Deployment Permission Error
19(0x13) NoCallPermission Invalid call Error
20(0x14) NoTxPermission Invalid transaction Error
21(0x15) PrecompiledError Precompiled Error
22(0x16) RevertInstruction Revert Instruction Error
23(0x17) InvalidZeroSignatureFormat | Invalid Signature Format
24(0x18) AddressAlreadyUsed Address Already Used Error
25(0x19) PermissionDenied Permission Denied
26(0x1a) CallAddressError Call Address does not exist Error

5.5 Development SDK and Examples

5.5.1 BSN Gateway SDK Example

Normally, if an off-BSN system wants to communicate with a permissioned DApp service on
BSN, it has to call the public city nodes (PCN) gateway APIs. We provide a BSN Gateway
SDK (Software Development Kit) which can help developers quickly implement an off-BSN
system to call the PCN Gateway. Inside the SDK, we provide PCN gateway API encapsulation
which you can use to implement the transaction querying, transaction interface calling,

96

Blockchain-based Service Network User Manual

generate public key and private key locally, register user certificate, generate certificate
signature, encrypt and decrypt data, etc.

Download links:

https://github.com/BSNDA/PCNGateway-Go-SDK

https://github.com/BSNDA/PCNGateway-Java-SDK

https://github.com/BSNDA/PCNGateway-PY-SDK

https://github.com/BSNDA/PCNGateway-CSharp-SDK

5.5.2 Sample Smart Contract Packages

For your reference, the following is the sample source code of our preset chaincode/smart
contract packages, including Golang, and solidity language examples.

» Fabric example

Download link:

https://github.com/BSNDA/FabricBaseChaincode

» FISCO BCOS example

Download link:

https://github.com/BSNDA/FISCOBaseContract

We invite experienced developers who are interested in BSN to work together to optimize the
SDK and sample packages. If you'd like to participate, please contact us on GitHub.

5.6 BSN Testnet Services

5.6.1 Overview

BSN Testnet is a free test environment for developers to test their permissioned DApp services.
Developers can publish an unlimited number of permissioned DApp services on the testnet.
Unlike the BSN production environment, it is not necessary to choose the public city nodes
and configure the invocation authorities of smart contracts when publishing DApp services on
the testnet. The Testnet supports Hyperledger Fabric and FISCO BCOS frameworks, and will
continue to integrate all BSN-adapted permissioned frameworks. Like all testnets do, we will
occasionally reset the Testnet and delete all smart contracts and ledger data. Therefore, please
do not use the Testnet as a commercial or production environment. We welcome developers to
try the service and provide us with feedback and suggestions as we continue to make
improvements.

5.6.2 Permissioned DApp Service Publication

The steps to publish a permissioned DApp service for testing are as follows:
1. Create a new test service

Go to the Permissioned Services > Testnet Services page to publish the service.

97

https://github.com/BSNDA/PCNGateway-Go-SDK
https://github.com/BSNDA/PCNGateway-Java-SDK
https://github.com/BSNDA/PCNGateway-PY-SDK

Blockchain-based Service Network User Manual

Testnet Services
My Test Services Interchain Services

My Test Services (The test network prevides debugging environment of smart contract and node gateway access for permissioned chain developers. The test network will be reset on 08/02/2021. Al deployed test services will
be deleted after the reset.)

Service Name Version Framework Deployment Date Status Action

No Data

Click Create a Test Service and input the service name, version, and select a platform type.

Testnet Services / Create a test service

100 Platf y Fabric Global-1.43-secp256r1 L]
Chaincode Name Version Chaincode Language Init Param Main Path Chaincade Package Action
Nothing to show here

Click Upload Chaincode Package to upload the chaincode or smart contract package. You
can upload multiple chaincode/smart contract packages in a permissioned DApp service.
Input the information and click Confirm to upload the package.

Add Chaincoda Package @

2. Deploy the permissioned DApp service:
Click Start Deploying to deploy the service.

98

Blockchain-based Service Network User Manual

Create a test App?

[Tt

v

Deployment committed!

After successfully deploying the chaincode/smart contract, developers can call it from their
off-BSN systems so that they can configure and debug the functions easily.

Note: To keep the resources stable, DevOps will periodically clean up the chaincode/smart
contract packages and ledger data on the Testnet.

5.6.3 Interchain Services on BSN Testnet

A demo version of Interchain Communications Hub (ICH) is now live on the Testnet,
integrating the cross-chain solution based on the relay chain mechanism (Poly Enterprise
developed by Onchain Tech). We welcome developers to try it out and provide feedback and
suggestions, and we will continue to improve the functionality.

For detailed descriptions and examples of ICH services, please refer to chapter 8, "Interchain
Services"

99

Blockchain-based Service Network User Manual

6 Dedicated Node Services

6.1 Overview

BSN dedicated node services apply BSN technologies including multi-layer framework
adaptation, virtualized container, automated deployment and node gateway to provide users
with "out-of-the-box" blockchain cloud services. Users can quickly create their own dedicated
permissioned blockchain operating environment, configure node's CPU, memory, disk capacity
and other parameters in the BSN portal; they can independently manage nodes, publish smart
contracts, access node data and monitor blockchain operation status. The dedicated node does
not restrict APIs of the framework, and all APIs can be called by developers after they access
the dedicated node through the gateway.

Currently, dedicated node services allow users to build the permissioned chain services based
on ConsenSys Quorum (an open source, free and enterprise-focused blockchain framework),

Hyperledger Fabric, and Besu in the BSN public city node built on AWS cloud platform. The
version of ConsenSys Quorum is v20.10.0, and its consensus mechanism supports Raft and
IBFT mechanisms; the version of Hyperledger Fabric is v2.3.2, and its consensus mechanism

is Raft; the version of Hyperledger Besu is v21.1.2, and its consensus mechanism is Clique and
IBFT.

6.2 Project Management

6.2.1 Create Projects

1. In the BSN menu, click the Permissioned Service dropdown, in the list, click Dedicated
Node Services to open the page. The page lists the projects created by the user and shows
the status information of each project.

Project Name Frameworl k Cloud Platform Region Payment Status Payment Type Deployment Time Status Action

Details Unsubscribe
test Consensys QUOrUM-V2... AWS Hong Kong Payment Successful Annually (UTC+8:00) 04/28/2021... Running
Edit Authorized Account

Details Unsubscribe
dgds ConsensSys Quorum~2... AWS Hong Kong Payment Successful Monthly (UTC+8:00) 04/28/2021... Running
Edit Authorized Account

ABCCC Consensys Quorum-v2.. AWS HongKong Unpaid Annually - Not Deployed Details Pay

3 items found, display 110 3 n

2. Click Create Project button and jump to the information page. This page contains 4
sections: Basic Information, Node Information, Gateway Information and Data Usage
Information.

1) Basic Information: This section shows the basic information of the service.

® When the framework is ConsenSys Quorum-v20.10.0, the following basic information
will be displayed, including project name, framework, consensus mechanism (options
including: Raft, IBFT), cloud platform and region.

100

Blockchain-based Service Network User Manual

Basic Information

ConsenSys Quorum-v20.10.0
Raft
AWS

Paris

® When the framework is Hyperledger Fabric-v2.3.2, the following basic information
will be displayed, including project name, framework, consensus mechanism (Raft),
cloud platform, region, consortium name, and channel name.

Basic Information

Hyperledger Fabric-v2.3.2

Raft

aws

Beijing

® When the framework is Hyperledger Besu-v21.1.2, the following basic information
will be displayed, including project name, framework, consensus mechanism (Options
including: Clique, IBFT), cloud platform and region.

Basic Information

TestBesu

Hyperledger Besu-v21.1.2

Clique
AWS

Hong Kong

2) Node Information: The publisher can select the number of nodes and other resource
information, including CPU, memory and data capacity. The price is automatically
calculated based on the resources which publisher has selected.

® When the framework is ConsenSys Quorum-v20.10.0 or Hyperledger Besu-v21.1.2,

the node information includes: Number of Nodes, Host Configuration, Data Capacity
and Price.

101

Blockchain-based Service Network User Manual

Node Information

*Please select the number of nodes and resource information:
Number of Nodes Host Configuration Data Capacity Price (USD/year)

1 2Core+4G 50G 1315.88

® When the framework is Hyperledger Fabric-v2.3.2, the node information includes:
Number of Nodes, Number of Orderers, Host Configuration, Data Capacity and Price.

Node Information

*Please select the number of nodes and resource information:
Number of Nodes Number of orderers Host Configuration Data Capacity Price (USD/month)

3 3 4Core+8GEB 50GB 747.42

3) Gateway Information: This section shows the information of the gateway node, and
this node contains Nginx service and a blockchain browser. Publisher does not need to
select resources.

Gateway Information

Mote: This node contains Nginx service and a blockchain browser.
Number of Nodes Host Configuration Data Capacity Price (USD/year)

2717.85

4) Data Usage Information: This section shows the unit data price for inbound gateway
traffic and outbound gateway traffic.

Data Usage Information
Inbound Data Usage (USD/GE) Outbound Data Usage (USD/GE)

0.00 0.01

3. Click Next button to jump to Charge Details page. This page has 3 sections: Resource
Cost, Data Usage Information and Total Cost.

102

Blockchain-based Service Network User Manual

Dedicated Node Services Create Project

Resource Cost

Mumber of Nodes

e+4G

Gateway Cost Information:

Number of Nodes

ACore+8G

$378.71 (Pay by month)

Data Usage Information

Inbound Data Usage (USD/GB)
Total Cost

Total charges: $4131.28

MNote:

m o Back

1) Resource Cost: Resource Cost section contains the cost of node resources and
gateway resources. According to the resource cost information, the publisher can
either pay by month or pay by year. A discount will be applied when paying annually.

® When the framework is ConsenSys Quorum-v20.10.0 or Hyperledger Besu-v21.1.2,
the node information section of the resource cost includes: number of nodes, host

configuration, data capacity, and price.

® When the framework is Hyperledger Fabric-v2.3.2, the node information section of
the resource cost display includes: number of nodes, number of orderers, host

configuration, data capacity, and price.

2) Data Usage Information: This section shows the unit data price for inbound gateway

data usage and outbound gateway data usage.

Host Configuration

Host Configuration

Data Capacity Price (USD/year)

1413.43

Data Capacity Price (USD/year)

2717.85

© 54131.28 (Pay by year) Discount of §413.24

Qutbound Data Usage (USD/GB)

3) Total Cost: The total charges that the publisher should pay for.

4. After the publisher confirms the Charge details, click "Confirm" button to make payment.
The payment will be deducted from the user's personal (or corporate) account. If the
deduction fails, the bill will be kept for 72 hours before expiration. If you still want to open
a dedicated node service, you can resubmit or recreate the project by editing the current

project.

Note: In terms of dedicated node services payment, developers can make payments for
dedicated node services with the status of "not deployed" and pending payment, payment
failed, and "running" but in arrears. The payment will be debited from the user's personal
(or corporate) account. After the payment is successful, the developer should wait for the

deployment of the dedicated node.

6.2.2 Edit Projects

1. Dedicated node services with the status of "not deployed" and billing invalid, pending
payment, payment failed, and "deployment failed" and fully refunded can be edited. In the

edit page, developer can edit the basic information and node information.

103

Blockchain-based Service Network User Manual

2. Once edited the information, developer can jump to the Charge Details page to pay the bill.
After the payment is successfully made, developer can then wait for the deployment of the
dedicated node.

6.2.3 Delete Projects

Dedicated node services that are in the status of "not deployed" with expired billing and
"deployment failed" with full refund can be deleted.

6.2.4 View Project Details

When the dedicated node has been deployed, the developer can view the detailed information
of the project. Click Details button in Action column to jump to the project details page. There
are 3 sections in this page: Basic Information, Resource Information and Deployment
Information.

1. When the framework is ConsenSys Quorum-v20.10.0, the page is shown as below:

Dedicated Node Services / Details

Basic Information

nel Omtest

Kk ConsenSys Quorum-v20.10.0 ConsensusType: raft

tform: aws Paris.

Status: Paid Date: (UTC+8:00) 01/19/2022 17:44:14

Resource Information

Node Resource and Cost Information

Number of Nodes Host Configuration Data Capacity Price (USD/month) Price (USD/year)

1 2Core+4GB 50GB 109.65 1196.48

Gateway Cost Information:

Number of Nodes Host Configuration Data Capacity Price (USD/month) Price (USD/year)

1 2Core+4GB 50GB 109.65 1196.48

Data Usage Information

Inbound Data Usage (USD/GB) Outbound Data Usage (USD/GB)

0 0.01

Deployment Information

Deployment node list

e ci6PRTx3FuqlxPINRI

Type Peer Name Status Deployment Time Action
Peer Node nodel Running (UTC+8:00) 01/19/2022 17:49:44 Details
Gateway Services Browser Running (UTC+8:00) 01/19/2022 17:49:45 Details Open URL

1) Basic Information: Project Name, Framework, Consensus, Cloud Platform, Region,
Payment Status and Created Date.

2) Resource Information: Node resource and cost information, Gateway Cost Information
and Data Usage Information.

104

Blockchain-based Service Network User Manual

3) Deployment Information: The developer can view node information and browser
information. Clicking on the "Details" button corresponding to the peer node, developer
can view the information of Access and Credentials, Transaction Manager cluster, and
Default Wallet.

Access and Credentials
RPC Endpoint https://bsnl7xt7eab.bsngate.com: 19602/node1 Copy

Transaction Manager (TM) Endpoint https://bsnl7xt7eab.bsngate.com: 19602/tm1 Copy

Transaction Manager Cluster

Public Key Sk Copy

Private Key R Copy
Default Wallet

Address 0x3abd77BFcf7c5861e9B805EC93542B6F4bfO57D0 Copy

Public Key sk Copy

Private Key ook Copy

4) By clicking on the "Details" button corresponding to gateway services, the developer can
obtain the URL address of the blockchain browser.

Access and Credentials

URL: https://bsnl Txt7eab.bsngate.com:19602/explorer Copy

2. When the framework is Hyperledger Fabric-2.3.2, the page is shown as below:

105

Blockchain-based Service Network User Manual

Dedicated Node Services Details

Basic Information

Name: hf232

ork: Hyperledger Fabric-v2.3.2 ConsensusType: raft

m: - test d: hf

Bejjing

us: Paid te: (UTC+8:00) 01/19/2022 17:20:33

Resource Information

Node Resource and Cost Information

Number of Nodes Number of orderers

3 3 2Core+4GB

Gateway Cost Information:

Number of Nodes. Host Configuration

1 2Core+4GB

Data Usage Information

Inbound Data Usage (USD/GB)

o

Deployment Information
Deployment node list

Type Peer Name Status

Peer Node peert.orgl test.com Running

Peer Node peer3.org1 test.com Running

peer Node peer2.org1 test.com Running

Gateway Services Browser Running

Orderer ordererl.orderer.testcom Running

Orderer orderer3.orderer.test.com Running

Orderer orderer2.orderer.test.com Running

CA Certificate Service caorgltestcom Running

Host Configuration

Data Capacity

50GB

(UTC+8:00) 01/19/2022

(UTC+8:00) 01/18/2022 17:25:15

Data Capacity Price (USD/meonth) Price (USD/year)
50GB 28098 306632
Price (USD/month) Price (USD/year)
93.66 10221
OQutbound Data Usage (USD/GB)
Click to download CA certificate and configuration information

Deployment Time Action
(UTC+8:00) 01/19/2022 17:25:15 Details

Details

(UTC+8:00) 01/19/2022 17:25:15 Details

Details Open URL

(UTC+8:00) 01/19/2022 Details
(UTC+8:00) 01/19/2022 17:25:15 Details
(UTC+8:00) 01/19/2022 17:25:15 Details
(UTC+8:00) 01/19/2022 Details

1) Basic Information: Project Name, Framework, Consensus, Cloud Platform, Region,
Consortium Name, Channel Name, Payment Status and Created Date.
2) Resource Information: Node resource and cost information, Gateway Cost Information

and Data Usage Information.

3) Deployment Information: Click on the "Click to download CA certificate
information" button to download the certificate. Clicking on the "Details" button
corresponding to the peer node, developer can view the information of Access and

Credentials.

106

Blockchain-based Service Network User Manual

Access and Credentials

RPC Endpeint grpcs://18.167.69.153:1051 Copy

4) Clicking on the "Details" button corresponding to the browser, developer can obtain the
URL address of the blockchain explorer.

Access and Credentials

URL: http://71.131.227.181:18080 Copy

-

3. When the framework is Hyperledger Besu-v21.1.2, the page is shown as below:

107

Blockchain-based Service Network User Manual

Dedicated Node Services Details

Basic Information

Name: TestBesu

ork:Hyperledger Besu -v21.1.2 ensus: Clique

. Hong Kong

te: (UTC+8:00) 07/22/2021 14:26:06

Resource Information

Node Resource and Cost Information

Number of Nodes Host Configuration

4 4Core+8GB

Gateway Cost Information:

Number of Nodes Host Configuration

1 4Core+8GB

Data Usage Information

Inbound Data Usage (USD/GB)

0

Deployment Information

Deployment node list

serame: VVOigrhtginDSqIfTR

Type Node Name Status
Peer Node node2 Running
Peer Node nodel Running
Peer Node node4 Running
Peer Node node3 Running

Gateway Services Browser Running

1) Basic Information: Project Name, Framework, Consensus, Cloud Platform, Region,

Payment Status and Created Date.

2) Resource Information: Node resource and cost information, Gateway Cost Information

and Data Usage Information.

3) Deployment Information: The developer can view node information and browser
information. Clicking on the "Details" button corresponding to the peer node, developer
can view the information of Access and Credentials, Transaction Manager cluster, and no

de information.

OQutbound Data Usage (USD/GB)

Price (USD/year)

Price (USD/year)

Action

Details

Details

Details

Details

Details Open URL

Blockchain-based Service Network User Manual

Access and Credentials
RPC Endpoint https://bsnH8WhcljA.bsngate.com:19602/node2 Copy
Transaction Manager (TM) Endpoint https://bsnHEWhcljA.bsngate.com:19602/tm2 Copy

Transaction Manager Cluster

Public Key sy Copy

Private Key R Copy

Node Information

Address 0x4A253dCAfC1f404D53013e4861ec8a19CATFIBBC Copy
Public Key R Copy
Private Key R Copy

4) By clicking on the "Details" button corresponding to gateway services, the developer can
obtain the URL address of the blockchain explorer.

Access and Credentials

URL: https://bsnH8WhcljA.bsngate.com: 19602 Copy

6.2.5 Unsubscribe Projects

For the dedicated node service in Running status, the publisher can unsubscribe that project:

?

Are you sure you want to unsubscribe
from the project "test"?

Your unsubscripticn will generate a refund of $3752.57, the refund
request has been submitted, please wait for the review.
After the review is completed, you will be notified by email, please
check!

[.. el

For users who pay monthly for node and gateway resources, no refund will be generated when
unsubscribing; for users who pay annually for node and gateway resources, refunds will be

109

Blockchain-based Service Network User Manual

made at the point of time from the next month to the end of the billing cycle when unsubscribing.
The discount policy for annual payment will be cancelled and the refund will be calculated by
actual refundable months.

Are you sure you want to unsubscribe
from the project "test"?

Your unsubscription will generate a refund of $3752.57, the refund
request has been submitted, please wait for the review.
After the review is completed, you will be notified by email, please
check

6.2.6 Edit Authorized Account

Authorized account is mainly used for the verification of connecting nodes or blockchain
browsers to increase network security. Only the dedicated node with successful payment and
running can edit the authorized account. Click "Edit Authorized Account" button in the
dedicated node service list and jump to the page of editing the authorized account. Enter the
new username, new password, confirm the new password, and click the "Confirm" button to
edit the authorization account.

Edit Authorized Account
Current Authorized Username: gy9BbiAMog594e3of
New Authorized Username

A Virthiarired Pacow
New Authorized Passwort

Q

Lol m Authorized Passwi

(=)

6.2.7 Configuration Upgrade

Publishers can upgrade the node information or resource information of the service by using
the “Configuration Upgrade” function. They need to pay the corresponding resource upgrade
fee when upgrading the configuration.

110

Blockchain-based Service Network User Manual

The configuration upgrade cannot delete the original node and downgrade the configuration of
the original node. It can only upgrade on the basis of the current configuration.

The operation steps of the configuration upgrade are as follows:

Go to “Permissioned Services” -> “Dedicated Node Services”, select the running service,
click “Configuration Upgrade” to enter the configuration upgrade list page as below:

Dedicated Node Services / Configuration Upgrade

Configuration Upgrade - IRARTEEF 5

=

Application No. Configuration Upgrade Type Submitted Date Total Amount (USD) Status Payment Model Payment Status Action

In the configuration upgrade list page, click “Add” to enter the configuration upgrade
application page. The service configuration upgrade type is divided into node upgrade and
resource upgrade.

When the publisher is selecting the configuration type as node upgrade, he or she can select
the number of new nodes to be added:

Dedicated Nedea Services Add Configuration Upgrade

Resource Configuration - 2R Bt Ao

Hode Information:

Numbar of deployed
s Humber of added nodes CPU + RAM Hard Disk Drive Price (USD/month)
Humber of Nodes CPU + RAM Hard Disk Drive Price (USD/month}
2Core+
Usage Period and Fees: s
Usage Period until: 2021-11-28
detlas for canfiguation upgrade, and yeur account balance will be deducted autematically, Subsequent usage fees for all resources will be autematically deducted at

This payment does net include node gateway data usage charges. The node gate

L] @ QQMm C7 L

d and automatically deducted on 3 weekly basis based on actual usage. Please

111

Blockchain-based Service Network User Manual

When the publisher is selecting the configuration type as resource upgrade, he or she can select
the CPU, memory, and hard disk drive to be added in the node information and gateway
information:

- m] X
Dedkated Node Services | Acd Configuration Upgrade
PResource Configuration - RHRGIMIET L
Please select the configuration Resource Upgrade
upgrade type:
Mode Information:
Mumber of deployed nodes Degloyed CPU + RAM Depleyed hard disk drive CPU + RAM Hard Disk Drive Price (USD/marth)
1 2ore+AG =06 2oredd 506
Gateway informatior:
Number of deployed nodes Deployed CPU + RAM Deployed hard disk drive CPU + RAM Hard Disk Drive Prite (USD/month)
1 e+ 506 2oredG 306
Usage Pericd and Fees:
Usage Period unait 2001-11-28
QA odm
Peeded o pay-
hext estimated deducticre (Per manth]
Fromgt * You shauld pay ‘allars for configuation upgrade, and your accourt balance will be decucted automatically. Subsequent usage fees far all rescurces will be automasically deducted a1 dallsrs.

* Thiz payment does nat induds nade gateway dsta usage charges. The node ateway data wsage fee is biled and autamatically deducted an a weskly basis hased on sctual usage. Please ensure that there i suffcient

balance in your account 10 sveid affecting the nomal cperation of the service,

= B
= QM C~7 L

Click “Confirm” to submit the application of configuration upgrade. The system will ask for
the payment of the corresponding configuration upgrade:

Confirm the payment

The canfiguration uparade fee is L Are you sure to pay?
¥

Ll @QQmm C27 L

112

Blockchain-based Service Network User Manual

After the publisher clicks “Confirm”, the system generates a configuration upgrade bill and
debits the publisher's account. If the deduction is successful, the system will upgrade the
configuration. If the deduction fails, the bill will be retained for 72 hours before expiration, if
you still want to upgrade the configuration, you need to re-apply.

Note: The fee paid for the configuration upgrade is the upgrade fee, which is to make up the
difference between the pre-upgrade configuration and the post-upgrade configuration in the
billing cycle. After a successful upgrade, the next deduction cycle will be debited according to
the cost of new configuration.

6.3 Access Instructions

Once the project is created, the system will allocate the access information to the project
corresponding to the framework. The user will verify the access authorization when accessing
the dedicated node and can access the blockchain after passing the verification.

6.3.1 ConsenSys Quorum Access Instruction

1. Use GoQuorum Client to interact with nodes

Example:

$./geth attach
https://VuFeh@y7pLwtvDqjulW:y2sYuiIciR6IFtHbmC@bsnmu7dOgNn.bsngate.com:19602/no
del

INFO [05-08|16:05:52.534] Running with private transaction manager disabled -
quorum private transactions will not be supported

Welcome to the Geth JavaScript console!

instance: Geth/v1.9.7-stable-af752518(quorum-v20.10.0)/linux-amd64/gol.13.15

coinbase: Oxf957dPae8alclb2cdceaPacb8fbBa2a750abadaa
at block: 109 (Sat May 08 2021 16:05:48 GMT+0800 (CST))
datadir: /root/quorum/data

modules: admin:1.0 debug:1.0 eth:1.0 istanbul:1.0 miner:1.0 net:1.0
personal:1.0 rpc:1.0 txpool:1.0 web3:1.0

> web3.eth.blockNumber

11

2. Use JSON-RPC API to interact with nodes

® Geth JSON-RPC documentation:

113

Blockchain-based Service Network User Manual

https://github.com/ethereum/wiki/wiki/JSON-RPC

® (Quorum API documentation:

https://docs.goquorum.consensys.net/en/latest/Reference/APIs/PrivacyAPl/

The API can be called by using CURL and Postman.

Example:

$ curl -H "Content-Type: application/json" -d
{"jsonrpc":"2.0", "method":"eth blockNumber","params":[],"id":2}"
https://VuFehOy7pLwtvDgqjulW:y2sYuiIciR6JIFtHbmC@bsnmu7dOgNn.bsngate.com:19602/no

del

{"jsonrpc":"2.0","id":2,"result":"0x10"}
3. Use web3.js to interact with nodes
® Web3 js class library:

https://github.com/ChainSafe/web3.is

Example:

const Web3 = require("web3");

const web3 = new Web3(

new

Web3.providers.HttpProvider("https://VuF@hoy7pLwtvDgqjulW:y2sYuilciR6JFtHbmC@bsn
mu7d@gNn.bsngate.com:19602/nodel")

b

web3.eth.getBlockNumber().then(console.log);

6.3.2 Hyperledger Fabric Access Instruction

1. Use fabric-tools to interact with nodes

Example:

> Start cli:

» # docker-compose-cli.yaml file:

» $ cat docker-compose-cli.yaml

version: '2'

114

https://github.com/ethereum/wiki/wiki/JSON-RPC
https://docs.goquorum.consensys.net/en/latest/Reference/APIs/PrivacyAPI/
https://github.com/ChainSafe/web3.js

Blockchain-based Service Network User Manual

services:
cli:
container_name: fabric_peercli
image: hyperledger/fabric-tools:2.3.2
restart: always
tty: true
stdin_open: true
environment:
FABRIC_LOGGING_SPEC=DEBUG
CORE_PEER_TLS_ENABLED=true
CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/fabric/tls/ca.crt
CORE_PEER_ADDRESS=peerl.orgl.example.com:1051
CORE_PEER_MSPCONFIGPATH=/etc/hyperledger/fabric/msp
CORE_PEER_LOCALMSPID=0rgiMSP
ORDERER_CA=/etc/hyperledger/fabric/orderer/tlsca/tlsca.orderer.example.com
-cert.pem
- ORDERER_ADDRESS=ordererl.orderer.example.com:7050
working dir: /etc/hyperledger/fabric
command: /bin/bash
volumes:
- /var/run/:/host/var/run/

- ./certs/ordererOrganizations/orderer.example.com:/etc/hyperledger/fabric
/orderer

- ./certs/peerOrganizations/orgl.example.com/users/Admin@orgl.example.com/
msp:/etc/hyperledger/fabric/msp

- ./certs/peerOrganizations/orgl.example.com/peers/peerl.orgl.example.com/
tls:/etc/hyperledger/fabric/tls

- ./sharedfiles/chaincode:/etc/hyperledger/fabric/src

extra_hosts:

Blockchain-based Service Network User Manual

- "ordererl.orderer.example.com:161.189.69.75"

- "peerl.orgl.example.com:161.189.69.75"

Access to containers for chaincode deployment and invocation

#Chaincode deployment
// package

peer lifecycle chaincode package basic414.tar.gz --path ./asset-transfer-
basic/chaincode-javascript/ --lang node --label basic414

// install

peer lifecycle chaincode install basic414.tar.gz

// queryinstalled

peer lifecycle chaincode queryinstalled

// approveformyorg

peer lifecycle chaincode approveformyorg --name basic414 --package-id
basic414:16bf72ced8451fc6fd94bd139del532adfdd190af075c2e84a87513915a97365
-0 $ORDERER_ADDRESS --tls --tlsRootCertFiles $CORE_PEER_TLS ROOTCERT FILE
--cafile $ORDERER _CA --version 1.0 --channelID netchannel --sequence 1 --
connTimeout 30s

// queryapproved

peer lifecycle chaincode queryapproved --channelID netchannel -n basic414

// checkcommitreadiness

peer lifecycle chaincode checkcommitreadiness --channelID netchannel --
name basic414 --version 1.0 --sequence 1 --output json

// commit

peer lifecycle chaincode commit -o $ORDERER_ADDRESS --cafile $ORDERER_CA -
-channelID netchannel --name basic414 --version 1.0 --sequence 1 --
peerAddresses $CORE_PEER_ADDRESS --tls --tlsRootCertFiles
$CORE_PEER_TLS_ROOTCERT FILE

// querycommitted

peer lifecycle chaincode querycommitted -o $ORDERER_ADDRESS --channellD

netchannel --tls --tlsRootCertFiles $CORE_PEER_TLS ROOTCERT_FILE --cafile
$ORDERER_CA

#Invoke the chaincode

// InitlLedger

Blockchain-based Service Network User Manual

peer chaincode invoke -o $ORDERER_ADDRESS --tls --cafile $ORDERER_CA -C
netchannel -n basic414 --peerAddresses $CORE_PEER_ADDRESS --
tlsRootCertFiles $CORE_PEER TLS ROOTCERT FILE -c '{"Args":["InitLedger"]}'
// GetAllAssets

peer chaincode query -C netchannel -n basic414 -c
"{"Args":["GetAllAssets"]}"

// CreateAsset

peer chaincode invoke -o $ORDERER_ADDRESS --tls --cafile $ORDERER_CA -C
netchannel -n basic414 --peerAddresses $CORE_PEER_ADDRESS --
tlsRootCertFiles $CORE_PEER_TLS ROOTCERT_FILE -c
"{"Args":["CreateAsset","asset7","white", "15", "zx1", "800"]}"
//UpdateAsset

peer chaincode invoke -o $ORDERER ADDRESS --tls --cafile $ORDERER_CA -C
netchannel -n basic414 --peerAddresses $CORE_PEER_ADDRESS --
tlsRootCertFiles $CORE_PEER_TLS ROOTCERT_FILE -c
"{"Args":["UpdateAsset","asset7","zx1", "1218", "zx1", "1218"]}"
//ReadAsset

peer chaincode query -C netchannel -n basic414 -c
"{"Args":["ReadAsset","asset7"]}"

6.3.3 Hyperledger Besu Access Instruction

1. Interact with node by Geth console.

Example:

[root@localhost ~]

INFO [07-
15|13:41:24.391] Running with private transaction manager disabled - quorum pr
ivate transactions will not be supported

WARNING: call to admin.getNodeInfo() failed, unable to determine consensus mec
hanism

Welcome to the Geth JavaScript console!

instance: besu/v21.1.2/1linux-x86_64/oracle_openjdk-java-11
coinbase: Oxfdefdb96a3326c61756711d314bea®149088c3d9
at block: 195 (Thu Jul 15 2021 13:41:24 GMT+@800 (CST))

modules: eea:1.0 eth:1.0 ibft:1.0 net:1.0 perm:1.0 priv:1.0 web3:1.0

Blockchain-based Service Network User Manual

> web3.eth.blockNumber

202

2. Interact with nodes by JSON-RPC.

[Geth JSON-RPC document](https://github.com/ethereum/wiki/wiki/JISON-RPC):

[Quorum API document](
): You can use curl and Postman to call the API.

- Example:

" shell
[root@localhost ~]# curl -H "Content-Type: application/json" -d \
"{"jsonrpc":"2.0","method":"eth_blockNumber","params":[],"id":2}" \

> https://admin:123456@bsn91000001.bsngate.com:19602/nodel

"jsonrpc" : "2.0",
"id" 2,

"result" : "Ox365"

3. Interact with node by Web3.js.

- [web3.js class base](https://github.com/ChainSafe/web3.js)

- Example:

https://besu.hyperledger.org/en/stable/Reference/API-Methods/
https://besu.hyperledger.org/en/stable/Reference/API-Methods/

Blockchain-based Service Network User Manual

" “shell

const Web3 = require("web3");

const web3 = new Web3(

new Web3.providers.HttpProvider("https://VuF@hey7pLwtvDqjuW:y2sYuiIciR6JIFtHb

mC@bsnmu7dOgNn.bsngate.com:19602/nodel™)

)5

web3.eth.getBlockNumber().then(console.log);

119

Blockchain-based Service Network User Manual

7 Permissionless Services

7.1 Overview

The Permissionless service allows the participant to select a public city node to access a plan
that can be a free plan or a premium plan. When this is done, the participant can create a project,
obtain the project ID, key and access parameters which can be used to access selected public
chain node gateway. With the Permissionless service, the default plan is free for participants,
however, it has limited daily requests and projects. BSN has created several other plans that
can be upgraded to, for a certain fee, paid on a monthly basis.

7.2 Select Plans

On the page of Permissionless services, users can select different city nodes to participate in
Permissionless services. The nodes in blue at the top of the list represent those activated for the
free plan or premium plans on that city node. The nodes in grey at the bottom represent no
plans are purchased or used on that city node.

nam Blackchain-based @ user Manual Documentation 3 Message Center 2, Profile
Service Networl

Hom:

Permissionless Services City Nodes Framework Name m

Perm T

& Ccalifornia PCN
~
powered by AWS

IDE Services =) Hong Kong PCN

powsred by AWS

=) Paris PCN
User Center powered by AWS

ETH-Mainnet ETH-Goarli EOSIO-Mainnet EOSIO-Testnet EOSIO-Mainnat-dfuse

When you click and expand the public city node, you can see all public chain frameworks
supported by the city node. Users can decide whether to choose this city node as the access
entrance according to their needs. The public chain frameworks supported by different city
nodes may be different. In general, we recommend that developers choose a city node that is
close to them, so that the access speed will be relatively fast.

120

Blockchain-based Service Network User Manual

Services Per Services
&> Paris PCN
powered by AWS >
Plan Project List Statistics L
Supported Public Chains (33): ABCDEF GHIJ KLMN OPQRST UVWXYZ
ETH-Mainnet EOSIO-Mainnet Algorand-Mainnet
[y ETH-Goerli WEO2 Algorand Algorand-Testnet
EOSIO-Mainnet-dfuse
Official Website Official Website Official Website Official Website
GitHub GitHub GitHub GitHub
- Findora-Mainnet Cypherium-Mainnat
Casper \' Findora-Testnet Q Cypherium-Testnet
Findora B
Official Website Official Website Official Website
GitHub GitHub GitHub

By default, participants on the Permissionless service have a free plan that is free to use up to
2000 daily requests, allowed TPS of 100 and maximum of 3 projects. However, a participant
can upgrade to a higher plan available on the platform. To select plans, follow these steps

1. On the Permissionless page, click Buy in the Select Your Plan section.

Select Your Plan: ‘ ‘

Supported Public Chains: Free Plan i0S10-Mainnet-Dfuse
Basic Plan
Professional Plan

Enterprise Plan

“ ‘ - |

2. In the Details page, locate the Select or Update your plan section and click Buy on the
appropriate plan.

Free Plan Basic Plan Professional Plan Enterprise Plan Custom Plan
FREE USD20.00/month UsD100.00/month USD500.00/month
Daily Requests: 2,000 Daily Requests: 40,000 Daily Requests: 250,000 Daily Requests: 1,500,000 Daily Requests: Custom
Allowed TPS: 100 Allowed TPS: 100 Allowed TPS: 100 Allowed TPS: 100 Allowed TPS: Custom
Number of Projects: 3 Number of Projects: 10 Number of Projectst 50 Number of Projects: 100 Number of Projects: Custom

/ -) “ “ “ Plesse contactus ot

support@bsnbase.com

3. In the Are you sure you want to buy package window, click the project agreement and
click Confirm.

121

Blockchain-based Service Network User Manual

Are you sure to select Basic Plan?

Read and agree to BSN public chain project protocol/agreement.

4. In the Select Payment Method page, select the appropriate payment method and click
Next Step to be redirected to Stripe.

The BSN portal never records and stores any credit card information.

122

Blockchain-based Service Network User Manual

Chechout
Overview
Basic plan 20.00USD/month
Daily Requests: 40000
Allowed TPS: 100
Mumber of Projects: 10

Payment Method

 —
‘ Pay by Credit Card ‘
VISA @ 30 oA

Description Quantity Price

Basic plan 1 20.00UsD

Total: 20.00UsD

Go back

‘fou will be directed to Stripe. We never store credit card infermation

5. On the Stripe Payment page, click Pay to display the Receipt and Invoice.

123

Blockchain-based Service Network User Manual

Invoice from RED DATE (HONG KONG) TECHNOLOGY

LIMITED

Billed to billjackson5
Invoice #841DA2D2-0001

$20.00 USD due Aug 13, 2020

Card number MM/ YY CVC

DESCRIPTION QTy PRICE TOTAL
"Basic Plan" Permissionless service 1 $20.00 $20.00

+ PDF Amount due $20.00

If you have any questions, contact RED DATE (HONG KONG) TECHNOLOGY
LIMITED at support@bsnbase.com or call +86 10 8646 2811.

7.3 Create and Manage Projects

With the Permissionless service, projects can be created in a much simpler way when compared
with Permissioned service as plans are embedded into the project, making it easier for
participants to manage. To create and manage projects follow these steps:

1. Inthe Permissionless Service page, click Create Project in the development plan section.

124

Blockchain-based Service Network User Manual

— =3 -
&> California PCN
~
powered by AWS
Used Daily Requests: 072000
Supported Public Chains(33): ETH.Mainnet ETH.Goerli EOSIO.Mainnet EOSIO-Testnet EOSIO-Mainnet-dfuse
Next Billing Date: N/A

In the Create a new project window, enter the Project Name, select the Public Chain to
access from the dropdown list, input the Daily Requests number if needed. Then click
Create Project. The Daily Requests number is optional, and it is used to control the TPD
(transactions per day) for this project.

Create a Mew Project

California PCN

“Project Mame

Project Mame

*Choose the Chain

Choose the Chain

Daily Requests

0~2000

Create Project

Go Back

This will automatically create the project and list it in the Project Information tab.

After a project has been created it can be managed using available tools for the project. To
manage a project, follow these steps:

1.

Locate the project to be managed, click Upgrade to display the Plans page.

125

Blockchain-based Service Network User Manual

2. Select the appropriate plan to Upgrade to and click confirm to display the payment page.

To enable the project key, in the Permissionless Service page, click Project list to display
the list of projects. In Action, click Enable Key to enable the project key. Then the
information page on enabling the key will be displayed. Click Confirm.

Project
N L Public Chain Daily Requests Project ID Project Key Access Address Action
ame
http://192.168.1.187:8080/api/5b
5b14244913ebe275d770ed 14244913ebe275d770edch1502¢cc
ETHmain ETH-Mainnet 200 cb1502ccbebe7c7dc3f670aa I"‘I

26515068828040323¢ 6e6e7c7dc3f670aa8655068828e4

W Delete

4. To update a project key, click Update Key. Then the information page on updating the
key will be displayed. Click Confirm.

Project
o : Public Chain Daily Requests Project ID Project Key Access Address Action
ame
http://192.168.1.187:8080/api/5b
. 5b14244913ebe275d770ed 2af3e633160e09b6064a27b0c8ae4 14244913ebe275d770edcb1502¢c
ETHmain ETH-Mainnet 200 cb1502cc6ebe7c7dc3fo70aa 4a3fbb10299e115959bbaes38bc19
865f5068828249923¢ fhhe23 6e6e7c7dc3f670aa865f5068828e4
9923c/ETH-Mainnet/rpc
© Disable Key
1 items found, display 1to 1 I Delete n

5. To delete a project, click Delete. A confirmation message will be displayed asking if you
wanted to delete the project. Click Confirm to delete it.

Are you sure you want to delete?

Confirm

7.4 Off-BSN system Access Guide

7.4.1 Overview

BSN provides shared or dedicated public chain nodes for public chain application developers.
Developers can quickly access all public chain networks by accessing the gateway of the public

city node.

126

Blockchain-based Service Network User Manual

BSN City Node 1

After developers select the public chain framework (netcode) in the BSN portal to create the
public chain project, they will get the gateway’s domain name address (url), project number
(id), project key (key), public chain supportive protocol {protocol} and public chain gateway
API address.

The developer accessing the PCN gateway via HTTP should concatenate the request address
in "https://{url}/api/{id}/{netcode}/{protocol}/{subUrl}" format. If project key is enabled, "x-
APi-key:{key}"should be added to the request header. If the public chain nodes provide
multiple components, they should add {subUrl}; If the Nervos CKB has an Indexer component
service in addition to the RPC service, "{subUrl}" should fill the indexer value, {subUrl} is
optional.

The developer accessing the node gateway via WebSocket, should concatenate the Key and
SubUrl to the path address of the target machine and concatenate to the format of
{url}/api/{id}/{key}/{netcode}/{subUrl}. If the project key is not enabled, then the {key} filed
should be null. If there is no subUrl, this field can be null. That is, developers can think of the
content after/API as the method name of a target machine.

7.4.2 Ethereum

Ethereum is a global, open-source platform for decentralized applications. On Ethereum, you
can write code that controls digital value, runs exactly as programmed, and is accessible
anywhere in the world.

For more resources, please visit: https://ethereum.org/en/developers/

The BSN public city node gateway is adapted to the Ethereum JSON RPC API, so developers
can initiate transaction requests to the node gateway via HTTP JS-RPC. For detailed docking
instructions please visit: https://eth.wiki/json-rpc/API

The following table shows additional error code definitions for public city node gateways:

Error code Transaction error code Error code description
500 o)
-32099 Service internal exception
503
429 -32098 TPS, TPD current limit

127

https://ethereum.org/en/developers/
https://eth.wiki/json-rpc/API

Blockchain-based Service Network User Manual

401 -32097 Authentication permission failed

743 EOS

EOSIO is a blockchain platform designed for the real world. Built for both public and private
use cases, EOSIO is customizable to suit a wide range of business needs across industries with
rich role-based security permissions, industry-leading speeds and secure application processing.

For more resources, please visit: https://developers.eos.io

The BSN city node gateway is adapted to EOSIO's JSON RPC API, so developers can
initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking
instructions please visit:

https://developers.eos.io/manuals/eos/latest/nodeos/plugins/chain_api_plugin/api-
reference/index#operation/get _block

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description
401 3090000 Authentication permission failed
429 3210000 TPS, TPD current limit
500 Service internal exception
3100000
503 Service Unavailable

7.4.4 Tezos

Tezos is an open-source platform for assets and applications backed by a global community of
validators, researchers, and builders. Tezos is designed to provide the safety and code
correctness required for assets and other high value use cases. Its native smart contract language,
Michelson, facilitates formal verification, a methodology commonly used in mission-critical
environments such as the aerospace, nuclear, and semiconductor industries.

For more resources, please visit: https://developers.tezos.com

The BSN city node gateway is adapted to the Tezos JSON RPC API, so developers can
initiate transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking
instructions please visit:

https://tezos.gitlab.io/api/rpc.html

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code Error code description
401 3090000 Authentication permission failed
429 3210000 TPS, TPD current limit
500 Service internal exception
3100000
503 Service Unavailable

128

https://developers.eos.io/
https://developers.eos.io/manuals/eos/latest/nodeos/plugins/chain_api_plugin/api-reference/index#operation/get_block
https://developers.eos.io/manuals/eos/latest/nodeos/plugins/chain_api_plugin/api-reference/index#operation/get_block
https://developers.tezos.com/
https://tezos.gitlab.io/api/rpc.html

Blockchain-based Service Network User Manual

7.4.5 Near

NEAR is a Proof-of-Stake Layer-1 public blockchain platform built with usability and
developer accessibility in mind. With a novel sharding mechanism called Nightshade, NEAR
can scale limitlessly and offers familiar user experiences just like the web today.

For more resources, please visit: https://near.org/

The BSN city node gateway is adapted to the Near JSON RPC API, so developers can initiate
transaction requests to the node gateway via HTTP JSON-RPC. For detailed docking
instructions please visit:

https://docs.near.org

The following table shows additional error code definitions for public city node gateway:

Error code Transaction error code | Error code description

401 3090000 Authentication permission failed

429 3210000 TPS, TPD current limit

500 Service internal exception
3100000 - -

503 Service Unavailable

8 Interchain Services

A cross-chain mechanism is the interoperability between two or more relatively independent
blockchains, and it enables the swap and transfer of data, asset and information. On the BSN,
every blockchain maintains its own transactions, consensus, and ledgers, carrying business data
and information of different DApps. The cross-chain mechanism realizes data sharing and
business collaboration among blockchains, and to break the silos between chains, allows data
to flow securely and reliably across multiple chains. The main functions of the cross-chain
system include cross-chain registration management mechanism, cross-chain contract
functions, cross-chain transaction verification, cross-chain message routing protocol, cross-
chain transaction atomicity guarantee, etc.

IRITA Node = REEERC IRITA Node
Poly Node SEEC=RpERE ettt Poly Node

129

https://near.org/
https://docs.near.org/docs/api/quickstart

Blockchain-based Service Network User Manual

The BSN Interchain Communications Hub (ICH) adopts the cross-chain protocol of
heterogeneous chains and the design of double-layer structure, using relay chains as cross-
chain coordinators, multiple heterogeneous chains as cross-chain transaction executors, and
acts as a relayer of cross-chain data. By solving validity, security, and transactional issues of
cross-chain data, a secure, easy-to-use and efficient cross-chain system is implemented:

* Supports both isomorphic and heterogeneous chains.
e Supports any information to cross the chains.

* Very easy to access. Application chains do not need to do custom development adaptation,
just deploy one smart contract per chain.

* Transactional support, supporting not only scenarios with the need for ultimate consistency
of transactions, but also scenarios with the need for strong consistency of transactions,
with support for any transaction, and scalable to any number of chains.

® Cross-chain protocols are secure and reliable, based on cryptography and consensus
algorithms, and each application chain can verify the legitimacy of cross-chain
transactions on its own, thus ensuring the security of cross-chain interactions.

The BSN's "Interchain Communications Hub" (ICH) is now commercially available and
integrates with Onchain's Poly Enterprise cross-chain solution. It enables cross-chain
interoperability between standard permissioned chains, open permissioned chains and public
chains.

A demo version of ICH is also live on the BSN Testnet, integrating the cross-chain solution
based on the relay chain mechanism (Poly Enterprise developed by Onchain). We welcome all
developers to try it out and provide feedback and suggestions to us, and we will continue to
improve the cross-chain functionality.

8.1 Interchain Service Management

8.1.1 Open Interchain Services

There are two ways to open Interchain Services: permissioned DApp service publishers can
either open it when upgrading their services, or they can open Interchain Services separately.

1) Open the Interchain Service when upgrading the permissioned service.

For published permissioned services, publishers can open Interchain Services through the
Service Upgrade function:

On the home page, click Permissioned Services -> Published Services, click Service
Upgrade in the Action column to enter the service upgrade page.

130

Blockchain-based Service Network User Manual

Blockchain-based ser Manual cumentation essage Center 2, Profile
EENS:Ni(:Nuwnrk @ User Manual B2 Do tat 51 Message Cente & Profil

Service Name Platform Type Participants Status Payment Status Action

Basie Inf Editing
tems found, display 110 2 Join
ion n
Service Upgrade
Create A New Service
Testnet Services v

n Upgrade

Invite Participants

In the Interchain Services section, select Yes to activate Interchain Services, and choose the
Interchain Service Protocol. Then, click Confirm to submit the service upgrade. After the
system review and approval, the Interchain Service is successfully opened.

Published Services Service Upgrade

Interchain Services

Activate Interchain Servicess @ Yes Mo
Interchain Service Protocol: Poly Enterprise (2]
Billing rules: The source chain generates bill according to the actual number of calls per week, and debit from scurce chain's account. Call

Upload Chaincode Package @

Note: If you open Interchain Services only, you don't need to upload new chaincode package;
after opening the service, when calling across the chain, both source chain and target chain
need to communicate off the BSN about cross-chain parameters, methods and specifications.
2) Directly open the service in Interchain Services

On the home page, click Interchain Services

131

Blockchain-based Service Network User Manual

E m Blockchain-based
Service Network

Testnet Services Interchain Services

Home

Permissionless Services

Service Name Platform Type

Permissioned Services

InterchainServiceTest1 Fabric-1.4.3-secp256r1

Published Services
. i 1 items found, display 1 to 1

Participated Services

Participation Management

Testnet Services

My Certificates

Interchain Services

User Center

Q@ User Manual

Version Interchain Service Protocol Activation Time Status

1.0.1 Poly Enterprise (UTC+8:00) 01/28/2021 18:00:15 Pending deactive

Activate Interchain Services

Click Activate Interchain Services button to enter Select services page, click Activate

Interchain Services in the Action column.

nam Blockchain-based
Service Network

Permissionless Services

Version Platform Type Publish Time
Permissioned Services
Fabric-1.4.3-secp256r1 (UTC+8:00)01/28/2021 15:02:
Interchain Ser
User Cente if . -
Developer Community
=N T
UTC
3 Fabr T
uTCH

@ User Manual & Documentation) Message Center 2,
Participants Status Payment Model Payment Status Action
pupleres ree fomen |:|
4 hed Payr
hed Pay
hed Payment
Published Per Month Payment success

The following steps can refer to Open the Interchain Service when upgrading the

permissioned service.

Note: For activated interchain services, users cannot change the interchain service protocols.
The protocol can only be changed by re-opening the interchain services.

8.1.2 View Interchain Services

On the home page, click Interchain Services, users can find the service list of their activated

interchain services.

Blockchain-based
Service Network

Home
Home
Service Name Platform Type Version
L= Fabri p
Fabr
User Cent:
Developer Community RN Febei .

) Message Center 2, Prc

@ User Manual

Documentation

Interchain Service Protocel Activation Time Status Action

Select the service to be checked, click View in the Action column, select Cross-chain
Information, users can check the chain ID, management contract address, management

contract name and cross-chain information.

132

Blockchain-based Service Network User Manual

E Blockchain-based
Service Network

Home

Permissionless Services

o
B8 Permissioned Services

Published Services
Participated Services
Participation Management
Testnet Services

My Certificates

Interchain Services

User Center

Developer Community

Home / Services Details

@ UserManual & Documentation & Message

BasicInformation Chaincode and Deployment Roles Participant Approval Operating Status I;l Comments/inquiries Historic Version

Poly Cross-chain Information
Chain I
Management Contract Address

Management Contract Name:

Cross-chain call information

maong ther

Atotal nu

Date

rongyaFFF" as

Amount

e source chain called 5 other services and

rongyaoFFF" as the target chain was called 10 times

On the Cross-chain Information page, click Details button to jump to Call Details page. Select
the parameter and click Query to retrieve the detailed cross-chain call information.

na Blockchain-based
Service Network

Home / Call Detai

Home

Permissionless Services

Permissioned Services

Published Services

Participated Services

Participation Management

Testnet Services

Source Chain Name

My Certificates

Interc

~chain call details

Source Chain Platform
Type

Target Chain Name

@ UserManual @ Documentation (1 Message Center 2, Profile

Target Chain Platform Interchain Service

Type

1) Tim: tatu Action
Protocol Call Time Status. ctiol

Go to List of cross-chain call details section, click Details button in Action column to enter
the Basic Information page, you can view the basic information of the cross-chain call details,
as shown in the figure:

EE Blockchain-based

Service Network

Home

Permissionless Services

Permissioned Services

Published Services

Participated Services

Participation Management

Testnet Services

My Certificates

Interchain Services

User Center

Developer Community

Home Call Details

Basic Information

Source Chain Name:

Source Chain Transaction Hash:

Target Chain Name:

Target Chain Transaction Hash:

Interchain Service Protocol:

Status:

rongyaoF FF

2343344

test_target

hash001

Poly Enterprise

Call successful

Q) User Manual

Fabric-1.4.3-secp256r1

Source Chain Platform Type:

Fabric-1.4.3-secp256K1

Target Chain Platform Type:

Call Time: (UTC+8:00) 01/26/2021 14:27:45

8.1.3 Deactivation and Activation of Interchain Services

1) Deactivation of Interchain Services

133

l

Blockchain-based Service Network User Manual

On the home page, click Interchain Services, users can see a list of their activated interchain
services. Select the service which needs to be deactivated and click Deactivate button in

Action column.

?

Are you sure to deactivate the interchain service of "myfabric123" 7

[=

Click Confirm in the pop-up message to deactivate the interchain service.
Note: It takes a few minutes to deactivate the interchain service, please be patient.
2) Activation of Interchain Services

On the home page, click Interchain Services, users can see a list of their activated interchain
services. Select the service which needs to be activated and click Activate button in Action
column.

?

Are you sure to activate the interchain service of "myfabric1 23" 2

A
m

Click Confirm in the pop-up message to activate the interchain service.

8.2 Interchain Services based on Poly Enterprise

8.2.1 Overview

A complete cross-chain transaction requires application contracts for multiple chains. For
example, there is an application contract on the Ethereum Ropsten and a FISCO BCOS
application contract on the BSN. These two contracts can interact across chains through the
cross-chain protocol to ensure the correctness of the information. The cross-chain contract
includes a management contract and an application contract. The management contract
implements the core logic of the cross-chain protocol, developed by the BSN development
team and is deployed in each chain; the application contract needs to be implemented by
blockchain application publishers according to the cross-chain protocol and deployed in the
blockchain network.

134

Blockchain-based Service Network User Manual

Management contracts include the following implementations.

1. ETH and FISCO BCOS

e EthCrossChainManager: contains logic of management.
e EthCrossChainData: used to save and manipulate data.
e EthCrossChainManagerProxy: used to implement logical contract upgrades.

2. Neo

e CCMC: contains the logic of management.

3. Fabric

e CCMC: contains the logic of management.

4. BSN Testnet Cross-chain management contract address

The following table shows the framework names, chain IDs, and cross-chain contract names
or addresses for Poly Enterprise-based cross-chain services.

42081b13bbd109b

China Fabric 88 ccm myhellopoly
FISCO 08 0x8f866dE652d34308De82E7D | 0x2e98{68147887288f1eb2eb
BCOS aF504D1af4B4b05SE9 d065ccc46be9bcd 9
International Fabric 89 ccm myhellopoly
FISCO 99 0xaF92fAe702C24CF5B214645 | 0xd8e0013aa9b41bb946acela
BCOS AdFE25821b5664667 848b5665¢17951200
Ropsten Ethereum) 0x1a9C1FE6cba599598d7F451 | 0x7210c828d9455C5319f50d2
50C2FD16F7338e2b0 06C9EdD603CE1F999
Testnet Neo 4 0x10b6edbb6e44188d0ff390654 | 0x73090f73056cfc40895799¢

2a061da7904d8b53d

The application cross-chain contains the following functions:

1. Outbound: The source chain's application contract initiates a cross-chain transaction
request and transfers this request from the source chain to the target chain. The user can
call a self-defined method in the source chain's application contract which calls the
‘crossChain’ method of the management contract. This will send the cross-chain data
through events.

2. Inbound: The target chain application contract receives the cross-chain transaction request.
This request information sent from the source chain is passed to the target chain application
contract. The cross-chain management contract receives and verifies the cross-chain
information. The cross-chain protocol requires the target chain application contract and
function name to be included in the cross-chain information. Then the management

135

Blockchain-based Service Network User Manual

contract invokes the specified method for the specified contract address and passes the
information to the target chain application contract.

8.2.2 Interchain Services based on Hyperledger Fabric
8.2.2.1 Application Contract Development Guide in BSN production environment

The development of Fabric application contract is based on its own business scenario. The
main implementation includes two parts: if the source chain initiates a cross-chain transaction,
its application contract needs to get outbound to access the target chain; if the target chain
receives a cross-chain transaction, its application contract needs to get inbound. Fabric's chain
ID and cross-chain management contract’s name are automatically assigned and generated
through the BSN operations and maintenance system when users open interchain services, and
can be viewed in the BSN portal.

An example of a specific cross-chain transaction call can be found in 7.2.2.3 Demo Contract
Example.

8.2.2.2 Application Contract Development Guide in BSN Testnet

Fabric's chain ID in the BSN China Testnet is 88 and in the BSN International Testnet is 89.
This chain ID is registered in Poly Enterprise, not the channel ID corresponding to Fabric itself.
The name of Fabric cross-chain contract is ccm.

An example of a specific cross-chain transaction call can be found in 7.2.2.3 Demo Contract
Example.

8.2.2.3 Demo Contract Example

BSN production environment and BSN Testnet:

https://github.com/BSNDA/ICH/tree/main/sample/polychain/fabric-contract/online/hellopoly

8.2.3 Interchain Services based on FISCO BCOS
8.2.3.1 Application Contract Development Guide in BSN production environment

The development of FISCO BCOS application contract is based on its own business scenario.
The main implementation includes two parts: if the source chain initiates a cross-chain
transaction, its application contract needs to get outbound to access the target chain; if the target
chain receives a cross-chain transaction, its application contract needs to get inbound.

An example of a specific cross-chain transaction call can be found in 7.2.3.3 Demo Contract
Example.

8.2.3.2 Application Contract Development Guide in BSN Testnet

FISCQO's chain ID in the BSN China Testnet is 98 and in the BSN International Testnet is 99.
This chain ID is registered in Poly Enterprise, not the group ID corresponding to FISCO itself.

The application contract example in BSN test network is the same as the production
environment, please visit 7.2.3.1 Application Contract Development Guide in BSN Production
Environment for details.

An example of a specific cross-chain transaction call can be found in 7.2.3.3 Demo Contract
Example.

8.2.3.3 Demo Contract Example

136

https://github.com/BSNDA/ICH/tree/main/sample/polychain/fabric-contract/online/hellopoly

Blockchain-based Service Network User Manual

BSN Production Environment and Testnet:
https://github.com/BSNDA/ICH/tree/main/sample/polychain/fisco_contracts/hellopoly

8.2.4 Interchain Services based on Ethereum Ropsten
Application Contract Development Guide

The development of the ETH application contract is based on its own business scenario. The
main implementation includes two parts: if the source chain initiates a cross-chain transaction,
its application contract needs to get outbound to access the target chain; if the target chain
receives a cross-chain transaction, its application contract needs to get inbound. ETH's chain
ID in the BSN Testnet is 2. This chain ID is registered in Poly Enterprise and the configuration
is applicable to both BSN Production Environment and Testnet.

Below is an example of a source chain initiating a cross-chain transaction call:

function say(uint64 toChainld, string memory functionName, string memory
_somethingWoW) public returns (bool){

[EthCrossChainManagerProxy eccmp =
[EthCrossChainManagerProxy(managerProxyContract);

address eccmAddr = eccmp.getEthCrossChainManager();

[EthCrossChainManager eccm = [EthCrossChainManager(eccmAddr);

bytes memory toProxyHash = proxyHashMap[toChainld];

137

https://github.com/BSNDA/ICH/tree/main/sample/polychain/fisco_contracts/hellopoly

Blockchain-based Service Network User Manual

require(eccm.crossChain(_toChainld, toProxyHash, bytes(_functionName),

bytes(_somethingWoW)),"EthCrossChainManager crossChain executed error!");

emit Say(_toChainld,toProxyHash, bytes(_somethingWoW)); return true;

Below is an example of a target chain call when receiving a cross-chain transaction:

function hear(bytes _somethingWoW, bytes fromContractAddr, uint64 toChainld) public
returns (bool){

hearSomeThing = somethingWoW;

emit Hear(_somethingWoW, fromContractAddr);

return true;

Demo Contract Example

GitHub: https://github.com/BSNDA/ICH/tree/main/sample/polychain/eth_contracts/hellopoly

8.2.5 Interchain Services based on Neo Testnet
Application Contract Development Guide

The development of Neo application contract is based on its own business scenario. The main
implementation includes two parts: if the source chain initiates a cross-chain transaction, its
application contract needs to get outbound to access the target chain; if the target chain receives
a cross-chain transaction, its application contract needs to get inbound. Neo's chain ID in the

138

https://github.com/BSNDA/ICH/tree/main/sample/polychain/eth_contracts/hellopoly

Blockchain-based Service Network User Manual

BSN Testnet is 4. This chain ID is registered in Poly Enterprise the configuration is applicable
to both BSN Production Environment and Testnet.

Below is an example of a source chain initiating a cross-chain transaction call:

public static bool Say(Biglnteger toChainld, string method ,byte[] msg)
{

var toProxyHash = HelloPoly.GetProxyHash(toChainld);

var ccmcScriptHash = HelloPoly.GetProxyHash(neoChainID);

bool success = (bool)((DynCall)ccmcScriptHash. ToDelegate())("CrossChain", new
object[] { toChainld, toProxyHash, method, msg });

HelloPoly.Notify(success, "[HelloPoly]-Say: Failed to call CCMC.");

HelloPoly.SayEvent(toChainld, toProxyHash);

return true;

Below is an example of a target chain call when receiving a cross-chain transaction:

Blockchain-based Service Network User Manual

public static bool Hear(byte[] inputBytes, byte[] fromProxyContract, BigInteger
fromChainld, byte[] callingScriptHash)

Storage.Put(fromProxyContract, inputBytes);

HearEvent(fromChainld, fromProxyContract, inputBytes);

return true;

Demo Contract Example
GitHub: https://github.com/BSNDA/ICH/tree/main/sample/polychain/neo-contract

9 IDE Services

9.1 Overview

An integrated development environment (IDE) is a software application that provides
comprehensive facilities to computer programmers for software development. It enhances the
development experience and efficiency by integrating tools such as compiler, editor, interpreter,
debugger, project manager, etc.

BSN IDE Services customize and integrate the third-party IDEs corresponding to the
frameworks adapted in BSN to form a development tool suite. When users create, publish and
upgrade DApp services in the BSN portal, if the framework used in the current DApp service
has already integrated with the IDE, they can create and modify smart contracts by calling the

140

https://github.com/BSNDA/ICH/tree/main/sample/polychain/neo-contract

Blockchain-based Service Network User Manual

IDE website with one click from the DApp service page. After finishing programming,
developers can debug the code and deploy the smart contract in the BSN production
environment or BSN Testnet. Developers do not need to install their own development tools
and set up debugging environment, all edited smart contract packages can be synchronized and
saved in the BSN portal and IDE.

Currently, the BSN International portal provides IDE services for permissioned frameworks
including Hyperledger Fabric and FISCO BCOS, as well as public chains including Ethereum,
Algorand and Nervos.

This iteration of IDE services is only available on the web. In the future, BSN will continue to
integrate more frameworks and launch the BSN IDE client version.

9.2 Access Instructions

Users can access to the IDE from BSN portal, or directly log in to the IDE web page with BSN
username and password.

If users jump from BSN portal to the IDE, the chaincode package will be automatically
synchronized, and after IDE finishes the operation of chaincode package and jumps back to the
portal, the chaincode package will be automatically synchronized to the corresponding service
in the portal.

BSN's IDE is mainly applicable to the following services: service publication of permissioned
chains, service editing and upgrading of permissioned chains, permissionless services and BSN
testnet services.

9.2.1 Service publication of permissioned chains

1. Log in to BSN portal, go to [Permissioned Services] -> [Published Services] , select
“Online IDE”;

o« e

| 1
T

2. Choose the platform type, click “Confirm” button to jump to the IDE web page;

141

Blockchain-based Service Network User Manual

3. Create, edit and deploy the chaincode package in the IDE, and select “Create a new service”;
® C(Create chaincode package:
Go to IDE, and click “New Project” button

USER0003202007291114524324092
) '
£8 Projects + New Project

bsnBaseCC
& Mainnet: Fal 5 Serv x11111111 | Chaincode: bs seCC | Version: 1.0.0

When creating the chaincode package, the IDE supports to import the chaincode
package from BSN portal, or developer can create from template or upload from local
disk drive.

New Project

Create type

Create from template

Create from template

Import from

FabricBaseChaincode

If “Create Type” is selected as “Upload from local”, developer should input chaincode
name, upload the chaincode package, and click “Create” button. Note that the file in the
chaincode package cannot contain Chinese characters.

New Project

Create type

Upload from local

Chaincode Name

Select File

Select

Cancel

142

Blockchain-based Service Network User Manual

If “Create Type” is selected as “Import from BSN”, developer should select the network
type, framework and chaincode package, and then click “Create” button to finish
creating the project.

New Project

Create type

Import from BSN

Network Type

Mainnet

Network

Fabric-secp256r1

Chaincode

Wi AEs SESASRksdjhksdhg | Chaincode NameChaincode NameChaincod...

Cancel Create

® Edit chaincode package:

Click and expand the chaincode package in the IDE, and edit the chaincode in the
editing page.

‘ Project
checkin

+ X @ -3 <> README.md Project Settings & maingo X+
~ checkin package main
~ chaincode
v go
~ bsnBaseCC
bsnchaincode

import (

)
» models
» utils func main() {
err := shim.Start(new(bsnchaincode.BsnChainCode))
if err 1= nil {
readme.md fmt.Printf("Error start
ReadMe.txt }
}

main.go

config.json
README.md

configjson

® Deploy chaincode package:
On the editing page, click on “Deploy” button and go to the “Deploy Chaincode” page.
Complete the from and click on “Deploy” button to deploy the chaincode package. Note
that the chaincode name cannot contain Chinese characters.

143

Blockchain-based Service Network User Manual

Deploy Chaincode

Network Type

Mainnet

Network

Fabric-secp256r1

Service

00011111111

Chaincode Name

bsnBaseCC

Chaincode Language
JAVA

Version

1.0.0

init parameters

Cancel | | Deploy

® (reate a new service
On the chaincode deployment page, select “New service” in the Service part, it will
navigate to BSN portal, Create a New Service page.

Deploy Chaincode
Network Type
Mainnet

Network

Fabric-secp256r1

Service

New service

Chaincode Name

bsnBaseCC

Chaincode Language

JAVA

Version

1.00

init parameters

Cancel | Deploy

4. Jump back to the BSN portal, “Create a New Service” page, and continue the following
process to publish the service. The chaincode package now has been synchronized to the
portal.

144

Blockchain-based Service Network User Manual

Published Sendces / Edit Service Information
Hom

Interchain Servi
P onless S

Activate Interchain Services: Yes @ N
rmissioned Ser

B s @ = . . 195
Participated Sarvices

Chaincode Name Version Chaincode Package Action
Par nagen

Edit

Testnet Serv
My Certificates

Define Service Functions @

+ Add Functions

Dedicated Node Services

9.2.2 Service editing and upgrading of permissioned chains

1. Log in to BSN portal, go to [Permissioned Services] -> [Published Services] , select
“Service Upgrade”;

Blockchain-based ser Manual acumentation) Message Center 2, Profite
uamﬁer\n(enzmwk @ User Manual & Dy tati Message Cent 2, Prati

Home

Platform Type Participants. Status Payment Status Action

Permissionless Services

2. Select the chaincode package to be edited, and click on “Online IDE” button to jump to the
IDE web page.

Activate INtercnain senvices Yes © No
Upload Chaincode Package @
+ Add Chaincode Package Use Preset Chaincode Package
Chaincade Name Version Chaincode Package Action

bsnBasec 0. FabricREIERT . rip Edit fJontine IDE Delete

3. Edit and deploy the chaincode package in the IDE;
The steps of editing and deploying the chaincode is the same as they are in 9.2.1.

4. Select the service to edit or upgrade;
On “Chaincode deployment” page, select the service which needs to be upgraded, and jump
back to the BSN portal Service Upgrade page.

145

Blockchain-based Service Network User Manual

Deploy Chaincode

Network Type

Mainnet

Network

Fabric-secp256r1

Service

New service

Chaincode Name

bsnBaseCC

Chaincode Language

JAVA

Version

1.00

init parameters

Cancel | Deploy

Navigate to the BSN portal and continue the following service upgrade process. In the
“Upload chaincode package” section, click on “Select chaincode package from IDE” button
to select the chaincode package from the IDE and replace the current one.

2 nless S
Act rchain Ses L L
Uplosd Chaincode Package @
+ Add Chaincode Package | Use Preset Chaincode Package | Select chaincode package from IDE
Par
Chaincode Name Version Chaincode Package Action
Participation Management
Edit OnineIDE Dalat
Testnet Services
My Cartificates
Dafine Service Functions @
+ Add Functions
Dadicated Nods Services

9.2.3 Access to permissionless services

Developers can access to the IDE to create, edit and deploy the chaincode package after
creating the project in the BSN permissionless services.

1.

Log in to the BSN portal, “Permissionless Services”, select the public city node and buy a
plan and create a project (for example on Ethereum-Mainnet);

Blockchain-based 2 2 o5
EE Service Network @ User Manual B Documentation Message Center 2, Profile

ity Nodes Framework Name =3
&> New York PCN
powered by AWS ~
Interchain S
Flan:TSP1 m m| Detsils |
IDE Services -
Dily Requests Used:: o0

Supparted Public Chains(14): ETH-Mzinnet ETHRopsten EOSIO-Mainnet EOSIO-Testnet EOSIO-Mainnet Diuse

Next Billing Dater: 05/24/2021

Buildable Projects:2/2 | projectust |

2. On the project list, click on “Online IDE” button in the created project to jump to the IDE;

146

Blockchain-based Service Network User Manual

& New York PCN
pawered by AWS

Flan Project List Statistics | Go Back |

Public Chain Access Instructions

Project Name Project

Project Name Public Chain Daily Requests Project ID Project Key Access Address Action

ETH-Mainnet

ETH-Mainnet

3. Create, edit, test and deploy the chaincode package in the IDE;
® (Chaincode package creation:
Go to IDE, and click “New” button.

B =

(None) ' Algorand-Mai...

USER0003202007291114524324092

i= Projects
InEH002
4 USER0003202007291114524324092/TE 002

grof
& USERD003202007291114524324092/grof

InH
4 USER0003202007291114524324092/T18

IE009

On “Create a New Project” page, input the project name, select the template and click
“Create Project” button to create the chaincode package.

Create a New Project

Project name

Template

Limit Order

Cancel

® Edit chaincode package:

147

Blockchain-based Service Network User Manual

Click and expand the chaincode package in the IDE, and edit the chaincode in the
editing page.

Project etwo
™ Algorand-Mai...

ces001 B (None)

+ M 2 £ - > READMEmd X+
[~ ces001
b tests
config.json
contract.teal

® Test chaincode package:
In the editing page, click on “Run Test Transaction” to test the chaincode package.

Test Transaction

Test

O.create_asset.json

Cancel Run Test Transaction

® Deploy chaincode package:
In the editing page, after passing the test, click on “Deploy” button to complete the
deployment of the chaincode package.

Project
mEo009

+ A e -] & README.md Project Settings % 4+
~ TRE009
- tests
1.pay.json

2.atomic_transfer.json P roj e Ct S etti n gS

3.multisig.json
4.asset_create.json 4 USER0003202007291114524324092/TE009

5.asset_transfer.json

6.asset_destroy.json General

7.contract.json

Project language

8.contract_delegated.json
config.json PyTeal
main.py
Main file

main.py

4. Chaincode package deployment. Developers can select the access information of the
project in the BSN portal.

148

Blockchain-based Service Network User Manual

9.2.4 BSN Testnet Services

BSN testnet services has integrated the IDE, and the specific steps are consistent with the
production environment.

9.3 My IDE

Login to the BSN portal and go to home page, click [IDE Services] , and enter the service

inquiry page.

Cantract projects in IDE Framework Name Servicemame Acien

BSN International portal supports developers to view the edited chaincode packages in IDE
service query page, developers can query by framework name or service name.

If a chaincode package is used in multiple services or projects, it will be associated with
multiple services or projects in the service name column, click the service name to jump to the
service to view the service/project details; click "Open in IDE" to jump to the IDE for
chaincode package editing.

10 DID Services

10.10verview

With blockchain technology as the cornerstone and W3C DID as the specification, BSN DID
Services achieve decentralized on-chain mapping of real entity, thus achieving the ability to
provide digital identity and digital credential interaction for individuals/organizations.

Roles
In the DID ecosystem, there are three roles: User, Issuer and Verifier.

* User: Any individual/organization/entity that has a digital identity on the chain. Any entity
object can create and manage its DID through the developer’s project.

* Issuer: The individual or organization that can issue the digital credentials For example, if
a university can issue a digital diploma to a student, then the university is an issuer.

* Verifier: Also known as a business party, is an individual or organization that uses digital
credentials. After being authorized by the user, the verifier can verify the identity of the

149

Blockchain-based Service Network User Manual

user or their digital credentials. For example, when a company hires someone, it needs to
verify his college diploma, then the company is a verifier.

User I_‘> Issuer ‘—} Verifier

o Apply Credentials o Manage Credential T
o Manage Credentials o Issue Credentials
o Show Credentials o Revoke Credentials

= Verify Credentials

Components

The DID system consists of three components: SDK, Service and Smart Contract. The SDK
can be integrated in the developer’s project; Service handles the business logic and connects
the private data storage area (Identity Hub) to the chain node; the smart contract is deployed
on the chain, and the methods in the contract is called by the Service.

DID Service
e — . — 8 — @
Developer Gateway Chain Node
>
Identity Hub

Functions and features

e Deployed on the BSN, the DID Service builds a decentralized digital identity management
system, which facilitates autonomous participation and affirmative collaboration among
users, issuers and verifiers.

e Provide a unified decentralized digital identity management, including identifier creation,
update and verification functions.

e Provide mechanisms for issuance, authorization, verification and revocation of user data
credentials.

e Provide a private data storage area (Identity Hub) where credentials are fully controlled by
users, and is stored and transmitted in encryption.

e Provide unified access to API services and SDKs, integrate object encapsulation, signature,
verification and other methods for easy docking by developers.

10.2 HTTP API

1. Access parameters

150

Blockchain-based Service Network User Manual

1 url Gateway URL https://did.bsngate.com:18602
2 projectld Project ID 8320935187
3 token Project Key 3wxYHXwAmS7grc9JUr2zrPHtOHC

2. Public parameters

Public request header parameters

token 3wxYHXwAmMS57grc9JUr2zrPHtOHC
2 projectld 8320935187
Content-Type application/json

Public request parameters

1 RequestParam<T> Y Public parameter
RequestParam

1 projectld String Y Project ID

2 did String Y DID

3 data T Y Any type of data

4 sign String Y Secp256k1 signature

Public Response Parameter

1 ResultData<T> Public response data
ResultData

1 code Integer Returned code

2 msg String Message

3 data T Any type of data

3. DID Creation

The process of creating DID generates public and private key pair. In order to avoid the
transmission of private keys, BSN DID Services do not provide the process of creating DIDs.
Developers can generate them locally as described below, or they can use or refer to the SDK
to complete the generation.

1) Generate two public and private key pairs through the elliptic curve algorithm Secp256kI1.

2) Save the private key and specify the primary and recovery public keys to assemble the Base
DID Document, the contents of which are shown below:

f
L

"(@context":"https://w3id.org/did/v1",
"authentication":

f
L

"type":"Secp256k1",
"publicKey":

151

Blockchain-based Service Network User Manual

"28986472722394106073871327423452879123214061743224210681401278929598807211
14000127450753032422192379586544768083674234896333734351022988066996849973

5858"

v
S

"recovery":

f

1
"type":"Secp256k1",
"publicKey":
"92519711680429159415515746419877215039845427616418520648539645411813788327
46959340151297908312616596971625573967556676367696067937171601766581709843

378481"

1
S

}

3) The DID identifier is generated by the base58(ripemd160(sha256(<Base DID
Document>)) algorithm in the following example format:

did:bsn:3wxYHXwWAmMS57grc9JUr2zrPHtOHC

4) Assemble the contents of the DID Document, as the following example:

"did":"did:bsn:3wxYHXwAmMS57grc9JUr2zrPHtOHC",
"version":1,

"created":"2021-05-20T16:02:20Z",
"updated":"2021-05-20T16:02:20Z",

"authentication":
f
1
"type":"Secp256k1",
"publicKey":
"28986472722394106073871327423452879123214061743224210681401278929598807211
14000127450753032422192379586544768083674234896333734351022988066996849973

5858"

|
s

"recovery":
]
1
"type":"Secp256k1",
"publicKey":
"92519711680429159415515746419877215039845427616418520648539645411813788327
46959340151297908312616596971625573967556676367696067937171601766581709843

378481"

5) Use the primary private key to sign the DID Document content with Secp256k1, and
finally form the DID Document with the signature attribute, as following:

"did":"did:bsn:3wx YHXwAmS57grc9JUr2zrPHtOHC",
"version":

"created":"2021-05-20T16:02:20Z",
"updated":"2021-05-20T16:02:20Z",
"authentication":

152

Blockchain-based Service Network User Manual

10.2
The

]
1

"type":"Secp256k1",

"publicKey":
"2898647272239410607387132742345287912321406174322
14000127450753032422192379586544768083674234896333
5858"

v
S

"recovery":
]
1

"type":"Secp256k1",

"publicKey":
"92519711680429159415515746419877215039845427616418520648539645411813788327
46959340151297908312616596971625573967556676367696067937171601766581709843
378481"

1

4210681401278929598807211
734351022988066996849973

S
"proof™:
S
§

"type":"Secp256k1",

"creator":"did:bsn:3wxYHXwAmMS7grc9JUr2zrPHtOHC",

"signatureValue":
"zD5nt+P/Ga/CRG2hJU/SMR Xy210CLdvATsxQdPxTEy9Mc9Y 0OSFpE3 Yu5k2+0OjQKV
Otu50f9VFbgO3Zljw/vQxs="

.1 DID API
creation of DID is done offline, so the following API is used to upload the DID to the chain

and query the DID Document information on the chain.

10.2.1.1 Verify DID Document
Interface Address /did/verifyDoc
Description Verify the content format and signature value of the offline generated DID
Document.
Interface request parameter
(Noo | pammeer | Type [Requied| Deseription
1 VerifyDocumentReq Y Wrapper class
VerifyDocumentReq
1 didDoc DidDocument Y DID Document
DidDocument
1 did String Y DID
2 version String Y Version
3 created String Y Created date
4 updated String Y Updated date
5 authentication PublicKey Y Primary public key
6 recovery PublicKey Y Recovery public key
7 proof Proof Y Signature
PublicKey

153

Blockchain-based Service Network User Manual

1 publicKey String Y Public key
2 type String Y Algorithm type
Proof
1 creator String % DIDs 1nvolved in the calculation
of signature values

type String Y Algorithm type

3 signatureValue String Y Signature value
Interface response parameter

1 Boolean Return true if success, return false if failed

10.2.1.2 Add DID Document to the chain

Interface Address

/did/putDoc

The DID Document is stored in the chain. The verification will be executed

Description internally, so if you want to upload the DID Document to the chain, you can
directly call this interface.
Interface request parameter
1 DidDocSotreReq Y Wrapper class
DidDocSotreReq
1 | didDoc Document ‘ Y ‘ DID Document
Document
1 did String Y DID
2 version String Y Version
3 created String Y Created date
4 updated String Y Updated date
5 authentication PublicKey Y Primary public key
6 recovery PublicKey Y Recovery public key
7 proof Proof Y Signature
PublicKey
1 publicKey String Y Public key
2 type String Y Algorithm type
Proof
1 creator String v DID involve.d in the calculation of
the Signature value
2 type String Y Algorithm type
signatureValue String Y Signature value
Interface response parameter
1 Boolean Return true if success, return false if failed

10.2.1.3 Get DID Document

154

Blockchain-based Service Network User Manual

Interface Address

/did/getDoc

Description

The information in the DID Document is a record and description of the DID, so
anyone can query the corresponding DID Document on the chain by the DID. It
can be used to verify the DID and obtain the DID public key.

Interface request parameter

1 DidDocumentReq Y Wrapper class
DidDocumentReq
1 did String Y DID
Interface response parameter
_ No. | Parameter | Type | Deerpon
1 DidDocument DID Document
DidDocument
1 did String DID
2 version String Version
3 created String Created date
4 updated String Updated date
5 authentication PublicKey Primary public key
6 recovery PublicKey Recovery public key
7 proof Proof Signature
PublicKey
1 publicKey String Public key
2 type String Algorithm type
Proof
creator String DID involved in the calculation of the Signature value
2 type String Algorithm type
3 signatt;reValu String Signature value

10.2.1.4 Verify DID Signature

Interface Address /did/verifyDidSign
Description Verify the signature value of the DID to ensure the authenticity and validity of the
current DID.
Interface request parameter
1 VerifyDidReq Y Wrapper class
VerifyDidReq
1 did String Y DID
2 didSign String Y DID signature value

Interface response parameter

Boolean

Return true if success, return false if failed

155

Blockchain-based Service Network User Manual

10.2.1.5 Update Key

Interface Address /did/resetDidAuth
The generation of the new authentication public-private key pair from the recovery
Description public-private key information is done by the DID SDK. The interface receives
new DID Document content from the user for on-chain update.
Interface request parameter
1 RestDocAuth Y Wrapper class
RestDocAuth
1 didDoc Document Y DID Document
) autthbKeyS String v The recovery private key perfm"ms k1
ign signature on the recovery public key
Document
1 did String Y DID
2 version String Y Version
3 created String Y Created date
4 updated String Y Updated date
5 authentication PublicKey N Primary public key
6 recovery PublicKey Y Recovery public key
7 proof Proof Y Signature
PublicKey
1 publicKey String Y Public key
2 type String Y Algorithm type
Proof
1 creator String Y DID involve.d in the calculation of the
Signature value
2 type String Y Algorithm type
3 signatuereValu String Y Signature value
Interface response parameter
| No. | Parameter | Tye | Desedpton
1 KeylInfo New authentication public key information
PublicKey
1 publicKey String Public key
2 type String Algorithm type

10.2.2 Issuer

The issuer and user are two roles, and the following APIs are the pre-constraints for issuing
credentials. The process of changing the DID user to the issuer does not change the DID
Identifier or DID Document, but only the status.

156

Blockchain-based Service Network User Manual

To issue a credential, a DID user needs to register as an issuer and then define a template for
registering the credential they want to issue. The credential template will be stored on the chain
and everyone can query.

10.2.2.1 Issuer Registration

Interface Address /did/register Authlssuer

The DID user becomes the issuer and the issuer information is uploaded if the

Description . .
P registration is successful.

Interface request parameter

1 RegisterAuthoritylssuerWrapper Y Wrapper class
RegisterAuthoritylssuerWrapper
1 did String Y DID
2 name String Y Issuer’s name
3 publicKeySign String Y Public key
Interface response parameter
1 Boolean Return true if success, return false if failed

10.2.2.2 Query Issuer

Interface Address

/did/queryAuthlssuerList

Description

Check whether you are the issuer by DID and identify which type of credentials
can be issued by name.

Interface request parameter

1 AuthIssuerListWrapper Y Wrapper class
AuthlIssuerListWrapper

1 did String Y DID

2 page Integer Y Page

3 size Integer Y Number of entries

Interface response parameter

1 Authoritylssuer Issuer Information
AuthoritylIssuer

1 did String DID

2 name String Issuer’s name

10.2.2.3 Register Credential Template

Interface Address /did/registerCpt
The issuer customizes the credential template and can agree on which attribute
.. values must be provided by the applicant. For example, in the template of college
Description . " " " "
diploma, you can agree that "name" and "student number" are mandatory
information.

157

Blockchain-based Service Network User Manual

Interface request parameter

—

1 RegisterCptWrapper Y Wrapper class
RegisterCptWrapper
1 did String Y DID
) cptJsonSchema Map<String, v JsonSchema information for
JsonSchema> MapType
3 title String Y Credential template title
4 description String Y Credential template description
5 type String Y Credential type, fill in proof
6 proof Proof Y Signature
7 create String Y Created date
8 update String Y Updated date
Proof
1 creator String % DID involveq in the calculation of
the Signature value
2 type String Y Algorithm type
3 signatureValue String Y Signature value
JsonSchema
1 type String Y Field type
2 description String Y Field description
3 required boolean Y Whether is required to fill
Interface response parameter
_ No. [Parameter | Tye | Deerpton
1 CptBaselnfo Credential template information
CptBaselnfo
1 cptld Long Credential template 1D
2 cptVersion Integer Version
10.2.2.4 Query Credential Template List
Interface Address /did/queryCptList
Anyone can check all their credential templates by DID. It is possible for the
Description same individugl/organization to register multiple credgntial templates. For
example, a university may have a degree template, an incomplete template, etc.
in addition to a diploma template.

Interface request parameter

1 QueryCptListWrapper Y Wrapper class
QueryCptListWrapper

1 page Integer Y Page

2 size Integer Y Number of entries

3 did String Y DID

158

Blockchain-based Service Network User Manual

Interface response parameter

1 Pages<CptInfo> Credential template list info
Pages<CptInfo>
1 page Integer Page
2 size Integer Number of entries
3 totalNum Integer Number of entries in total
4 totalPage Integer Number of pages in total
5 result List<CptInfo> Result list
Cptinfo
1 cptVersion Integer Credential template version
2 cptJsonSchema Map<String, JsonSchema> JsonSchema information for MapType
3 title String Credential template title
4 description String Credential template description
5 publisherDid String DID of the credential template issuer
6 proof Proof Signature
7 cptld Long Credential template ID
8 create String Created date
9 update String Updated date
JsonSchema
1 type String Field type
2 description String Field description
3 required Boolean whether is required to fill
Proof
1 creator String DID involveq in the calculation of the
Signature value
2 type String Algorithm type
3 signatureValue String Signature value
10.2.2.5 Query Credential Template
Interface Address /did/queryCptByld
Description Query the contents of a specific credential template by its ID.
Interface request parameter
_ No. | Parameter | Type | Required | Descripton
1 QueryCptByldWrapper Y Wrapper class
QueryCptByldWrapper
1 cptld Long Y Credential template ID
Interface response parameter

1 Cptlnfo Credential template information

Cptlnfo

159

Blockchain-based Service Network User Manual

1 cptVersion Integer Version
2 cptJsonSchema Map<String, JsonSchema information for MapType
JsonSchema>
3 title String Credential template title
4 description String Credential template description
5 publisherDid String DID of the credential template issuer
6 proof Proof Signature
7 cptld Long Credential template ID
8 create String Created date
9 update String Updated date
JsonSchema

1 type String Field type

description String Field description
3 required boolean WHETHER IS REQUIRED TO FILL

Proof
1 creator String DID involved in the calculation of the Signature
value
type String Algorithm type
signatureValue String Signature value

10.2.2.6 Update Credential Template

Interface Address

/did/updateCpt

Description

The issuer updates the content of its own registered credential templates. The
update of credential template does not affect credentials already issued.

Interface request parameter

1 RegisterCptWrapper Y Wrapper class
RegisterCptWrapper
1 did String Y DID
) cptlJsonSchema Map<String, v JsonSchema information for MapType
JsonSchema>
3 title String Y Credential template title
4 description String Y Credential template description
5 type String Y Credential type, fill in proof
6 proof Proof Y Signature
7 cptld Long Y Credential template ID
8 create String Y Created date
9 update String Y Updated date
Proof
1 creator String v DID involveq in the calculation of the
Signature value
2 type String Y Algorithm type

160

Blockchain-based Service Network User Manual

3 signatureValue String Y Signature value
JsonSchema
type String Y Field type
description String Y Field description
required boolean Y WHETHER IS REQUIRED TO FILL

Interface response parameter

1 CptBaselnfo Credential template information
CptBaselnfo
1 cptld Long Credential template ID

Version, plus one after each update is

2 cptVersion Integer successful

10.2.3 Credential

The credential is generated based on the credential template. The application of the credential
is made by the user, and then the issuer issues the credential. The credential issuance process
is generally as follows:

DID user fills the DID user initiate Issuer issues the
attributes of the the issuance credential to the

DID user queries the

credential template

credential template application user

Once the user has the credentials issued by the issuer, he/she can present them to the verifier
for further use.

10.2.3.1 Issue Credential

Interface Address /did/createCredential

The attribute values defined in the credential template are provided by the issuer
for the DID user to obtain on the front page. The issuer issues the credentials for
the DID user through this interface. If there are more Claim parameters than
defined in the credential template, the server side will discard them.

Description

Interface request parameter

1 CreateCredentialReq Y Wrapper class
CreateCredentialReq
cptld Long Y Credential template ID
2 issuerDid String Y DID of the credential template issuer
3 userDid String v DID of the user r-equesting the
credentials
4 expirationDate String Y Credential expiration date
claim Map<String,Object> Y Claim data
type String Y Credential type, fill in Proof
1] e N | Bl Gsrponof e rdeni

161

Blockchain-based Service Network User Manual

value of the title field in the
credential template is displayed. If
not, the input value is displayed.
8 longDesc String N Detailed descrtigrtlilcl))llla?ef the credential
Interface response parameter
(No. | Pamametr | Twe | Decripon
1 Credential Wrapper Credential issuance information
CredentialWrapper
1 context String Specification
2 id String Credential ID
3 type String Credential type, fill in proof
4 cptld Long Credential template 1D
5 issuerDid String DID of credential issuer
6 userDid String DID of the user requesting the
credentials
expirationDate String Expiration date
created String Created date
shortDesc String Brief description of the credential
10 longDesc String Detailed description of the credential
11 claim Map<String, Object> Claim data
12 proof Map<String, Object> Signature
10.2.3.2 Verify Credential
Interface Address /did/verifyCredential
Generally called by the verifier. It can verify whether a particular credential is
Description valid or not. Verify the signature of the credential, whether the credential is
expired, and whether the credential is revoked, respectively.

Interface request parameter

1 VerifyCredentialReq Y Wrapper class
VerifyCredentialReq

1 credential Wrapper Credential Wrapper Y Credential information

2 publicKey PublicKey Y Issuer’s public key
CredentialWrapper

1 context String Y Specification

2 id String Y Credential ID

3 type String Y Credential type, fill in Proof

4 cptld Long Y Credential template ID

5 issuerDid String Y DID of credential issuer

6 userDid String v DID of the user r§questing

the credentials
7 expirationDate String Y Expiration date

162

Blockchain-based Service Network User Manual

8 created String Y Created date
shortDesc String Brief description of the
9 N .
credential
longDesc String Detailed description of the
10 N .
credential
11 claim Map<String, Object> Y Claim data
12 proof Map<String, Object> Y Signature
PublicKey
publicKey String Y Public key
2 type String Y Algorithm type

Interface response parameter

Boolean

Return true if success, return false if

failed

10.2.3.3 Revoke Credential

Interface Address

/did/revokeCredential

Description

Called by the issuer to revoke or void a credential that has been issued. Since the
issued credential is already in the custody of the user, the revocation of the
credential is followed by the upload of its credential ID.

Interface request parameter

1 RevokCredentialReq Y Wrapper class
RevokCredentialReq
1 credld String Y Credential ID to be revoked
2 cptld Long Y Credential template 1D
3 did String Y Issuer’s DID
4 revokeDate String Y Revoked date
publicKeySign String The primary private key
5 Y performs a k1 signature on
the primary public key
revokeSign String After splicing the certificate
ID and revocation time, use
6 Y . .
the primary private key for
k1 revocation signature
Interface response parameter
1 Boolean Return true if success, return false if failed

10.2.3.4 Query Revoked Credential

Interface Address

/did/getRevokedCredList

Description

Issuer's DID.

Called when verifying credentials. Find out all its revoked credential IDs by

Interface request parameter

163

Blockchain-based Service Network User Manual

1 QueryCredential Wrapper Y Wrapper class
QueryCredentialWrapper
Page Integer Y Page
Size Integer Y Number of entries
did String Y Issuer’s DID

Interface response parameter

1 Pages<BaseCredential> Revocation list information
Pages<BaseCredential>
1 page Integer Page
2 size Integer Number of entries
3 totalNum Integer Number of entries in total
4 totalPage Integer Number of pages in total
5 result List<BaseCredential > Result list
BaseCredential
1 id String Credential ID
2 created String Revoked date
10.2.4 Identity Hub

BSN provides users with a privacy data storage area (Identity Hub, hereinafter referred to as
Hub) where users can choose to store their credentials or other data (both are called “resource”
into the Hub, which verifies the identity of visitors while the data is encrypted during
transmission and storage, leaving users in full control of access to their own data.

10.2.4.1 Register Hub User by DID

Interface Address /hub/regiter

Description Register by DID, if successful, returns the user's ID in the Hub.

Interface request parameter

1 RegisterHubReq Y Wrapper class
RegisterHubReq

1 did String Y DID

2 publicKey String Y Public key

Interface response parameter

1 RegisterHubResult Wrapper class of the returned value
RegisterHubResult
1 success Boolean Whether it is successful
2 uid String ID in the Hub
message String Result description

164

Blockchain-based Service Network User Manual

10.2.4.2 Register Hub User by Public Key

Interface Address /hub/regiter ByldPublicKey
Description Register by Public key. This function allows users define the ID by themselves. If
P successful, returns the user's ID in the Hub.

Interface request parameter

1 RegisterHubReq Wrapper class
RegisterHubReq
id String Self-defined Hub ID
2 publicKey String Public key
3 cryptoType String Encryp‘][éc();;;fornhm:

Interface response parameter

1 RegisterHubResult Wrapper class of the returned value
RegisterHubResult

1 success Boolean Whether it is successful

2 uid String ID in the Hub

3 message String Result description

10.2.4.3 Save Resource

Interface Address

/hub/saveResource

Description

Store the resource to the Hub. If the user stores it himself, the uid and the
ownerUid should be the same. At this time, there is no need to create permissions
to call directly; if the issuer stores it for the user after issuing the credentials, the
uid should be the issuer, and the ownerUid should be the user. At this time, the
user must have created “WRITE” permissions for it, otherwise the storage will fail.

Interface request parameter

1 SaveResourceReq Y Wrapper class
SaveResourceReq

1 uid String Y ID in the Hub

2 content String Y Resource information
The path of the resource
storage. Null when it is user

3 url String N self-storage; required when
the issuer stores it for the
user

4 ownerUid String Y Resource owner
WRITE means add;

5 t Stri Y ’

gran ne UPDATE means update
6 key String Y Key
7 sign String Y Signature

Interface response parameter

165

Blockchain-based Service Network User Manual

1 SaveResourceResp Wrapper class
SaveResourceResp

1 url String The path of the stored resource
Null when the issuer stores it for users; if it is the
user self-storage, returns the KeyA encrypted by

) encrvptKe Strin the user's Public key, and the user's private key

TypHiaey & decrypts KeyA to derive the plaintext Key. The
resource stored in the Hub is encrypted by Key
with AES-ECB algorithm.
10.2.4.4 Get Resource
Interface Address /hub/getResource

Description

Access the Hub and read the specified resource. Users have direct access, third
parties need to obtain authorization from the user to access.

Interface request parameter

QueryResourceReq Y Wrapper class
QueryResourceReq
uid String Y ID in the Hub
url String Y The path of the stored resource
sign String Y Signature
Interface response parameter
Resourcelnfo Resourcelnfo Wrapper class
Resourcelnfo
content String Content of cryptographic resource
For the ciphertext key, you need to use your own
key String private key to decrypt it first, and then decrypt the
content.
10.2.4.5 Delete Resource
Interface Address /hub/deleteResource
Description The owner of the resource can call t{l}iz fﬁlﬂgtion to delete certain resource within

Interface request parameter

1 DeleteResourceReq Y Wrapper class
DeleteResourceReq
1 uid String Y ID in the Hub
2 url String Y The path of the stored resource
sign String Y Signature

Interface response parameter

166

Blockchain-based Service Network User Manual

1 Boolean Return true if success, return false if failed

10.2.4.6 Create Permissions

Interface Address /hub/createPerm

Description

server side will return the same result for each call.

Resource owner creates the permissions of accessing to the resource in the Hub for
third parties. Permissions WRITE means store resource, UPDATE means update
resource, READ means read resource. An authorization can only be accessed once,
and an authorization with the same uid and the same permission cannot be created
again without access. However, the permissions of UPDATE and READ from the

Interface request parameter

1 CreatePermissionReq Y Wrapper class
CreatePermissionReq
1 uid String Y ID in the Hub
2 grant String Y Permissions
3 grantUid String Y Authorized ID in the Hub
4 grantPublicKey String Y Authorized public key
Encryption key.
5 grantEncryptKey String N READ/UPDATE permission
is required
The path of the stored
. resource.
6 url String N READ/UPDATE permission
is required
7 sign String Y Signature

Interface response parameter

1 AddPermissionResult Response data
AddPermissionResult
1 url String The path of the stored resource.
Ciphertext key to encrypt the resource
2 Key String (encrypted using the authorized public
key)

10.2.4.7 Delete Permissions

Interface Address /hub/deletePermission

Description

yet accessed by third parties.

Resource owner calls this function for permissions that have been created but not

Interface request parameter

1 DeletePermissionReq Y Wrapper class
DeletePermissionReq

1 uid String Y ID in the Hub

2 grant String Y Permissions

167

Blockchain-based Service Network User Manual

. . Authorized ID in the
3 grantUid String Y Hub
4 url String % The path of the stored
resource.
5 sign String Y Signature
Interface response parameter

1 DeletePermissionResult Response data
DeletePermissionResult

1 succes boolean Whether deleted successfully

2 message String Result description
10.2.4.8 Query Permissions

Interface Address /hub/queryPermission
e Resource owner calls this function to query Permissions that have already been
Description created

Interface request parameter

1 QueryPermissionReq Y Wrapper class
QueryPermissionReq
1 uid String Y ID in the Hub
z sme | N | VS e No
grantUid String N Authorized ID in the Hub
4 sign String Y Signature

Interface response parameter

1 List<PermissionInfo> Response data
PermissionInfo

1 url String The path of the stored resource

2 grant String Permissions

3 grantUid String Authorized ID in the Hub

4 status Tnteger 0 means de(lieetlee(ié ; means not

5 createTime LocalDateTime Created date

6 readTime LocalDateTime Read time

: VS e s NO

8 uid String ID in the Hub

9 key String Ciphertext key

10 ownerKey String Owner’s key

10.2.4.9 Query Granted Permissions

168

Blockchain-based Service Network User Manual

Interface Address

/hub/queryGrantedPermission

Description

Users can look up all or part of the permission records authorized to them in
three dimensions: the uid of the resource owner, whether it has been accessed
and the permission type.

Interface request parameter

1 QueryGrantedPermissionReq Wrapper class
QueryGrantedPermissionReq
1 uid String ID in the Hub
) ownerUid String N Resource owner’s ID in the
Hub
Access status. 0: query
. accessed permissions; 1:
3 flag String query unaccessed records;
if null, query both
Authorization type. READ:
4 grant Sting N Read; WRITE: Add;
UPDATE: Update
5 sign String Signature

Interface response parameter

1 List<GrantPermissionInfo> List of authorized records
GrantPermissionInfo
1 url String The path of the resource
storage.
Authorization type.
2 grant String READ: Read; WRITE:
Add; UPDATE: Update
3 status Integer 0: deleted; 1: not deleted
4 createTime Date Time tq crgate
authorization
5 readTime Date Accessed time. Null if not
accessed.
0: accessed; 1: not
6 flag Integer accessed.
7 ownerUid String ID in the Hub
8 OwnerKey String Ciphertext key
9 key String Owner’s key
10.2.4.10 Query Operation Record of the Resource

Interface Address

/hub/getResourceHistory

Description

Resource owner calls this function to query the operation record of the resource.

Interface request parameter

QueryResourceHistoryReq Y

Wrapper class

169

Blockchain-based Service Network User Manual

QueryPermissionReq
1 uid String Y ID in the Hub
2 url String N The path of the stored resource.
Authorization type. WRITE: Add;
3 operation String N UPDATE: Update; DELETE:
delete
4 sign String Y Signature

Interface response parameter

1 List<ResourceHistoryInfo> Resource o;ifsiatlon record
PermissionInfo
1 OperationUid String Operator’s ID in the Hub
2 ownerUid String Owner’s ID in the Hub
Authorization type.

3 operation String WRITE: Add; UPDATE:
Update; DELETE: delete

4 | OperationTime LocalDateTime Operation time

5 url String The path of the stored

resource.
6 key String Ciphertext key
7 content String Ciphertext resource
content
10.2.4.11 Change Resource Owner

Interface Address

/hub/transferowner

Description

Change the resource owner in the Hub.

Interface request parameter

1 TransferOwnerReq Y Wrapper class
QueryPermissionReq
1 uid String Y ID in the Hub
2 url String v The path of the
stored resource.
. . New owner’s ID
3 newOwnerUid String Y in the Hub
. . New owner’s
4 newOwnerPublicKey String Y public key
. New ciphertext
5 newKey String N key
6 sign String Y Signature

Interface response parameter

170

Blockchain-based Service Network User Manual

Return true if
1 Boolean Y success, return
false if failure

10.3 Response Code

0 Success
9999 Unknown exception
1001 {attribute} is null
1002 The format of {attribute} is invalid
1003 {attribute} contains a null attribute value
1004 {attribute} is too long
1005 Transaction timeout
1006 Transaction error
1008 Config file does not exist
1009 Node private key is empty
1010 DID contract address is empty
1011 CPT contract address is empty
1012 Auth issuer contract address is empty
1013 DID blockchain type is empty
1014 Failed to initialize the DID SDK
1020 Failed to create the key pair
1021 Public and private keys do not match
1022 Public key is empty
1023 Invalid public key format
1024 Private key is empty
1025 Invalid private key format
1027 Encryption Type is empty
1028 Invalid Encryption Type
1029 Failed to sign the data
1030 Signer and DID do not match
1031 Signature verification failed
1032 Public key and document's primary public key do not match
1033 Public key and document's recovery public key do not match
1040 DID already exists
1041 DID does not exist
1042 Failed to create DID
1043 Invalid DID
1044 Failed to generate the DID
1045 Failed to generate the DID Document

171

Blockchain-based Service Network User Manual

1046 DID Document verification success
1050 DID is registered as the issuer
1051 DID is not registered as the issuer
1052 Failed to register as the issuer
1054 Issuer does not exist
1060 CPT does not exist
1062 Issuer and publisherDid in the CPT do not match
1070 The credential has been revoked
1071 The credential has expired
1072 Failed to revoke the credential
1073 CPT and credential do not match
1074 Failed to create credential
1075 Credential verification success
1076 The credential is not in the revoke list
1077 Computed DID from the document is not the same with the DID in the
document
1078 Created time is different with updated time in DID Document
1079 Public key signature verification failed
1080 DID is not the same with the proof creator in CPT
1081 The DID Document version does not match the one on-chain
1082 The DID Document created time does not match the one on-chain
1083 The DID Document recovery key does not match the one on-chain
1084 Failed to add DID Document to the chain
1085 Failed to create the key pair
1086 Failed to calculate the DID
1087 Failed to calculate the DID Document signature
1088 Failed to create the DID Document
1090 The mnemonic is empty
1337 Failed to encrypt the key
1338 Failed to sign the data
Identity Hub
1303 Private key is empty
1304 Private key format is invalid
1305 Public key is empty
1306 Public key format is invalid
1307 Public key and private key do not match
1309 The content is empty
1310 The URL is empty
1321 The URL of the Identity Hub cannot be empty
1322 The public key of the Identity Hub cannot be empty

172

Blockchain-based Service Network User Manual

1327 Failed to send the request

1328 The format of the grant is invalid

1329 Grant cannot be empty

1335 Resource does not exist

1336 The key is empty

1337 Failed to encrypt the key

1338 Failed to sign the data

1341 Failed to delete permission

1342 Failed to query permission

1343 Grant is empty

1344 Failed to check permission

1347 Failed to query publicKey

1350 Config file does not exist

1351 The public key is empty

1352 You cannot add permissions to yourself
1354 Illegal flag

1361 The user ID is empty

1362 The granted user ID is empty

1363 The public key of the granted user is empty
1364 Failed to generate the user ID

1365 Failed to decrypt the data

1366 Failed to encrypt the data

1367 Failed to decrypt Identity Hub's private key
1368 The private key of Identity Hub is empty
1369 The public key of Identity Hub is empty
1370 No permission to save resource

1371 No permission to update resource

1372 The resource has been saved, cannot be saved again
1373 The granted user already has an unused permission
1400 Permission does not exist

1402 Failed to delete permission

1403 Failed to query permission

1406 Failed to get the public key

1407 Failed to update the public key

1408 Failed to save the resource

1409 Failed to query the resource

1410 Failed to delete the resource

1411 Failed to update the resource

1412 Failed to get the HTTP request

1413 Failed to get the private key of the Identity Hub

173

Blockchain-based Service Network User Manual

1414 Missing request data

1415 Failed to convert the request parameter

1416 Unknown client data or not connected

1417 Parse return code error

1418 Resource does not exist

1419 The URL format is invalid

1422 Signature verification failed

1423 The user is not registered

1424 User registration failed, the format of the public key is invalid
1425 The user is already registered

1426 The granted user does not exist

1427 The resource owner does not exist

1428 Failed to close the permission

1429 Only the resource owner can delete it

1430 Failed to add operation record

1431 Failed to register the user

1432 The user ID is empty

1433 Failed to parse the request parameter

1434 Failed to add the operation record

1435 Failed to update the resource

1436 The resource does not exist

1437 Failed to save the resource

1438 Failed to save the user information to the database

1441 The current permission has been used or the user does not have permission
1442 Failed to check the permission

1455 decrypt encptyKey failed

1456 decrypt content failed

1460 New owner's user ID is empty

1461 Failed to change the owner

1462 The uid and the ownerUid cannot be the same

1463 The ownerUid is not exist

1465 The new owner and new owner's public key do not match
1501 Failed to query the encryption key of the granted resource
1502 Failed to decrypt the key of the granted resource

1503 The resource does not exist

1504 The recovery key pair is incorrect, cannot reset DID authentication
1505 The primary private key and public key do not match

Note: {attribute} is a dynamic parameter.

10.4 SDK

174

Blockchain-based Service Network User Manual

BSN provides a Java version SDK, which implements signature, verification, communication
and other methods, so Java developers can quickly make API calls through the SDK.

1. Steps to Use

1) Download the SDK source code and compile and package it as a jar named did-sdk-
1.0.jar;

2) Add the did-sdk-1.0.jar to the classpath directory of the project project;

3) Create an instance of DidClient:
DidClient didClient = new DidClient(URL,PROJECTID,TOKEN);

4) Call the method in the SDK, as follows:
DidDataWrapper didData = didClient.createDid(true);

1. Specifications

U Timestamp
The format of the time is a string in the form of yyyy-MM-dd HH:mm:ss, for example:
2021-05-25 12:30:59 means May 25, 2021 at 12:30:59.

U Exception

A runtime exception “RuntimeException" is thrown when there is a runtime error.

2. Function Description

The methods in the SDK can be divided into four categories according to their functional
properties: DID, issuer, credential and privacy area, and each method is described below:

10.4.1 DID
10.4.1.1 Generate Private and Public Keys by Mnemonics

The user can customize mnemonics and call this function to generate a pair of public-private
keys for the k1 algorithm offline. As long as mnemonics are the same, the generated public and
private keys must be the same for each call.

Function name createKeyPair(List<String> mnemList)

Description The user can generate the private and public keys by mnimonics

Request Parameters

1 mnemList List<String> Y Mnemonics

Response Parameters

1 DidDataWrapper Y Private key
KeyPair
privateKey String Y Private key
2 publicKey String Y Public key
3 type String Y Algorithm Type

175

Blockchain-based Service Network User Manual

10.4.1.2 Create DID

Function name

createDid(Boolean isStorageOnChain)

Description

Call this function to create a DID. isStorageOnChain indicates whether the DID
Document is stored on-chain or not.

1 isStorageOnChain

Request Parameters

Boolean

On-chain marker. true means DID
Document is stored on-chain; false
means DID Document is not stored
on-chain.

Response Parameters

1 DidDataWrapper Y
DidDataWrapper
_ No | Parametr [Type [Required | Description
1 did String Y DID
) authPublicKey KeyPair Y Primary_ public/private key
information
3 recyPublicKey KeyPair Y Recovery public/private key
information
4 document DocumentInfo N DID Document
didSign String Y DID signature
address String Y Account address
DocumentInfo

1 did String Y DID
2 version String Y Version
3 created String Y Created date
4 updated String Y Updated date
5 authentication PublicKey Y Primary public key
6 recovery PublicKey Y Recovery public key
7 proof Proof Y Signature
KeyPair
_ No. | Parameter | Type | Required | Desripton
1 privateKey String Y Private key
publicKey String Y Public key
3 type String Y Algorithm type
PublicKey
| No. | Parameter | Type [Requied | Deseripon |
1 type String Y Algorithm type
2 publicKey String Y Public key

176

Blockchain-based Service Network User Manual

Proof
1 type String Y Algorithm type
2 creator String Y DID
3 signatureValue String Y Signature value

10.4.1.3 Verify DID Document

Function name verifyDidDocument(DidDocument didDocument)
Description Verify the content format and signature value of the offline generated DID
Document.
Request Parameters
© Ne. Paameter Type Required Deseripion
1 DidDocument Y
DidDocument
1 did String Y DID
2 version String Y Version
3 created String Y Created date
4 updated String Y Updated date
5 authentication PublicKey Y Primary public key
6 recovery PublicKey Y Recovery public key
7 proof Proof Y Signature
PublicKey
1 type String Y Algorithm type
2 publicKey String Y Public key
Proof

type String Y Algorithm type
2 creator String Y DID

signatureValue String Y Signature value

Response Parameters
~ Ne. Paameter Type Required Description
1 Boolean Y Return true i_f success,
return false if failure

10.4.1.4 Upload DID Document

Function name storeDidDocumentOnChain(DidDocument didDocument)

Store the DID document on-chain. Firstly to execute the verification, so that you can

Description call this function if you want to store the DID Document on chain.

Request Parameters

1 DidDocument Y
DidDocument
1 did String Y DID

177

Blockchain-based Service Network User Manual

2 version String Y Version
3 created String Y Created date
4 updated String Y Updated date
5 authentication PublicKey Y Primary public key
6 recovery PublicKey Y Recovery public key
7 proof Proof Y Signature
PublicKey
1 type String Y Algorithm type
2 publicKey String Y Public key
Proof
type String Y Algorithm type
creator String Y DID
signatureValue String Y Signature value
Response Parameters
1 Boolean Y Storage result

10.4.1.5 Get DID Document

Function name

getDidDocument(String did)

The information in the DID Document is a record and description of the DID, and

Description anyone can query the corresponding DID Document from the chain by the DID. It
can be used to verify the DID and obtain the DID public key.
Request Parameters
1 did String Y DID
Response Parameters
1 didDocument DidDocument Y DID Document
DidDocument
|
1 did String Y DID
2 version String Y Version
3 created String Y Created date
4 updated String Y Updated date
5 authentication PublicKey Y Primary public key
6 recovery PublicKey Y Recovery public key
7 proof Proof Y Signature
PublicKey
type String Y Algorithm type
2 publicKey String Y Public key
Proof

178

Blockchain-based Service Network User Manual

1 type String Y Algorithm type
2 creator String Y DID
3 signatureValue String Y Signature value

10.4.1.6 Verify DID

Function name

verifyDIdSign(String did, String didSign)

Verify the digital signature value of the DID, so that it can ensure the authenticity

Description and validity of the current DID.
Request Parameters
1 did String Y DID
2 didSign String Y DID signature

Response Parameters

Return true if success, return

Boolean Y false if failure

10.4.1.7 Key Update

Function name

resetDidAuth(ResetDidAuth restDidAuth)

If the primary private key is lost or leaked, a pair of primary public and private keys
can be regenerated by the recovery private key. The user completes the primary
public-private keys update with the recovery public-private keys. After the key is
updated, the user's DID Document will also be updated, but the DID remains the
same. If the user fills in the primary public-private keys, the primary public keys in
the DID Document is updated and the signature is recalculated using the filled-in

Description primary public key; otherwise, a new pair of primary public private keys is
automatically generated and the primary public key and signature calculation of the
DID Document are updated. Note: If the issuer updates the key, all the previously
issued credentials will not pass the signature verification (if the issuer records the
master public key of the credential in the business system, it can transmit the old
master public key information to the user, then it can also pass the credential
verification).
Request Parameters
1 ResetDidAuth Y
ResetDidAuth

1 did String Y DID

2 primaryKeyPair KeyPair N Primary public and private key

3 recoveryKey KeyPair Y Recovery public and private key

KeyPair

1 privateKey String Y Private Key

2 publicKey String Y Public Key

3 type String Y Algorithm type

Response Parameters

179

Blockchain-based Service Network User Manual

1 KeyPair Y New public and private key pair
KeyPair
1 privateKey String Y Private key
2 publicKey String Y Public key
3 type String Y Algorithm type

10.4.2 Issuer
10.4.2.1 Register Issuer

Function name registerAuthlssuer(Register AuthorityIssuer register)
o The DID user becomes the issuer, and the issuer information is uploaded to the chain
Description . . A
if the registration is successful.

Request Parameters

1 RegisterAuthoritylssuer Y
Register Authoritylssuer
1 privateKey String Y Private key
2 did String Y DID
3 name String Y Issuer’s name

Response Parameters

Return true if success, return false

1 Boolean Y if failure
10.4.2.2 Query Issuer
Function name queryAuthIssuerList(AuthlIssuerList query)

You can query whether it is the issuer through DID and identify the type of

Description credential that can be issued by name.

Request Parameters

1 AuthlssuerList Y
AuthlIssuerList
1 page Integer Y Number of pages
size Integer Y Number of entries per page
3 did String Y DID

Response Parameters

1 Pages<Authoritylssuer> Y Query result, the list of issuers

Pages

1 page Integer Y Page number

180

Blockchain-based Service Network User Manual

2 size Integer Y Paging Size
3 totalNum Integer Y Total number
4 totalPage Integer Y Total pages
5 result List< Authoritylssuer> Y List of issuers
Authoritylssuer
Mo |Parameter| Type | Required | Deseripton
1 did String Y DID
2 name String Y Issuer’s name

10.4.2.3 Register credential template

Function name

registerCpt(RegisterCpt registerCpt)

Description

The issuer customizes the credential template and can agree on which attribute
values must be provided by the applicant. For example, in the template of college
diploma, you can agree that "name" and "student number" are mandatory
information.

Request Parameters

1 RegisterCpt Y
RegisterCpt

1 did String Y DID

2 privateKey String Y Private key

3 cptJsonSchema Jli?; it;gf; Y JsonSchema of credential template

4 title String Y Title

5 description String Y Description

6 type String Y Credential Type, fill in Proof

7 cptld Long Y Credential template ID
JsonSchema

1 type String Y Field type

2 description String Y Field description

3 required Boolean Y true: required; false: optional

Response Parameters

Registration result, basic information of

1 CptBaselnfo Y credential template
CptBaselnfo
1 cptld Long Y Credential template ID
2 cptVersion Integer Y Credential template Version

10.4.2.4 Query Credential Template List

Function name

queryCptListByDid(QueryCptList query)

181

Blockchain-based Service Network User Manual

Description

Anyone can check all their credential templates by DID. It is possible for the
same individual/organization to register multiple credential templates. For
example, a university may have a degree template, an incomplete template, etc.
in addition to a diploma template.

Request Parameters

QueryCpt
QueryCpt
1 page Integer Y Number of pages
2 size Integer Y Number of entries per page
3 did String Y DID

Response Parameters

Pages<CptInfo>

Y

Query result, credential template
information list

Pages

1 page Integer Y Page number
2 size Integer Y Paging Size
3 totalNum Integer Y Total number
4 totalPage Integer Y Total pages
5 result List<CptInfo> Y List of credential templates
Cptlnfo
ﬁ
cptisonSchema Map<String, JsonSchema for Credential
JsonSchema> template
2 title String Y Title
description String Description
4 publisherDid String Y DID to ferz‘;‘g‘fa‘t’zedenﬁal
5 proof Proof Y Signature
6 create String Y Created date
7 update String Y Updated date
8 cptld Long Y Credential template ID
9 cptVersion Integer Y Credential template version
Proof
_—
type String Algorithm type
creator String Y DID
signatureValue String Y Signature value
JsonSchema

182

Blockchain-based Service Network User Manual

1 type String Y Type
2 description String Y Description
3 required Boolean Y true: required; false: optional

10.4.2.5 Query Credential Template

Function name queryCptByld(Long cptld)

Description Query the contents of a specific credential template by its ID.

Request Parameters

1 cptld Long Y Credential template ID

Response Parameters

1 Cptinfo % Query result, credential template

information
Cptlnfo
 No. | Paameter | Type | Requied | Descripon
1 cptisonSchema Jll/f)?szi‘gﬁf; Y J SonSChe::r?l It;cl);[eCredential
2 title String Y Title
3 description String Y Description
4 publisherDid String Y DID to Crf:rfptfecredential
5 proof Proof Y Signature
6 create String Y Created date
7 update String Y Updated date
8 cptld Long Y Credential template ID
9 cptVersion Integer Y Credential template version
JsonSchema
1 type String Y Type
2 description String Y Description
3 required Boolean Y true: required; false: optional
Proof
_ No. | Parameter | Type | Requied | Descripton

1 type String Y Algorithm type

2 creator String Y DID

3 signatureValue String Y Signature value

10.4.2.6 Update Credential Template

Function name updateCpt(RegisterCpt registerCpt)

The issuer updates the content of its own registered credential templates. The update

Description of the credential template ID does not affect issued credentials.

Request Parameters

183

Blockchain-based Service Network User Manual

1 RegisterCpt Y
RegisterCpt

1 did String Y DID

2 privateKey String Y Private key

3 cptJsonSchema Jl\s/f:g?c ?1211115; Y JsonSchema for Credential template

4 title String Y Credential template title

5 description String Y Credential template description

6 type String Y Credential Type, fill in proof

7 cptld Long Y Credential template ID
JsonSchema

1 type String Y Type

2 description String Y Description

3 required Boolean Y true: required; false: optional

Response Parameters

1 Cosasnto |y | Undaie el b mlomtiono

CptBaselnfo
| No. | Parameter | Type | Requied | Deseripon |
1 cptld Long Y Credential template 1D
) cptVersion Integer Y Credential template version, add 1 after
each successful update

10.4.3 Credential
10.4.3.1 Create Credential

Function name createCredential(CreateCredential createCredential)

The attribute values defined in the credential template are provided by the issuer for
the DID user to obtain on the front page. The issuer issues the credentials for the
DID user through this interface. If there are more Claim parameters than defined in
the credential template, the server side will discard them.

Description

Request Parameters

1 CreateCredential Y
CreateCredential
1 cptld Long Y Credential template ID
2 issuerDid String Y DID of the c.redentlal
template issuer
. . Y DID of the user who
3 userDid String created the credentials
o . Y Credential expiration
4 tionDat St
expIrationtate ring date. Should be greater

184

Blockchain-based Service Network User Manual

than today. In the form of
yyyy-mm-dd

Map<String,
Object>

Content of the credential.
The claim data needs to
correspond to the format

of the credential template

String

Credential type, input
Proof

privateKey

String

Private key

shortDesc

String

Brief description of the

credential. The default

value is the credential
template title.

longDesc

String

Detailed description of
the credential

Response Parameters

Creation result,

Credential Wrapper Credential information
CredentialWrapper
1 context String Y Version
2 id String Y Credential ID
3 type String Y Credential type, Proof
4 cptld Long Y Credential template Id
5 issuerDid String Y DID of the credential template
issuer
6 userDid String Y DID of the user who created the
credentials
7 expirationDate String Y Credential expiration date
created String Y Created date
shortDesc String Y Brief description of the credential
10 longDesc String N Detailed description of the
credential
claim Map<String, Y .
11 Object> Claim data
proof Map<String, Y .
12 Object> Signature
10.4.3.2 Verify Credential
. verifyCredential(CredentialWrapper createCredential,PublicKey
Function name .
publicKey)
Generally called by the verifier. It can verify whether a particular credential is
Description valid or not. Verify the signature of the credential, whether the credential is
expired, and whether the credential is revoked, respectively.
Request Parameters

185

Blockchain-based Service Network User Manual

1 createCredential | Credential Wrapper Y
2 publicKey PublicKey Y Public key
CredentialWrapper

1 context String Y Version

2 id String Y Credential ID

3 type String Y Credential type, Proof

4 cptld Long Y Credential template 1D

5 issuerDid String Y DID of the c-redential

template issuer
6 userDid String Y DID of the user who
created the credentials

7 expirationDate String Y Credential expiration date

8 created String Y Created date

9 shortDesc String N Brief descriptipn of the
credential

10 longDesc String N Detailed description of the
credential

11 claim Mg’;ggi;lg’ Y Claim data

12 proof Mzgszgiilg, Y Signature

PublicKey
1 type String Y Algorithm type
2 publicKey String Y Public key

Response Parameters

Return true if success,

1 Boolean Y return false if failure

10.4.3.3 Revoke Credential

Function name revokeCredential(RevokeCredential cred)

Called by the issuer to revoke or void a credential that has been issued. Since the
Description issued credential is already in the custody of the user, the revocation of the
credential is followed by the upload of its credential ID.

Request Parameters

1 RevokeCredential Y
RevokeCredential
1 credld String Y Credential ID
2 cptld Long Y Credential template Id
3 did String Y DID
4 privateKey String Y Private key

186

Blockchain-based Service Network User Manual

Response Parameters

Return true if success,

1 Boolean Y return false if failure
10.4.3.4 Query Revoked Credential
Function name getRevokedCredList(QueryCredentialList queryCredentialList)

Called when verifying credentials. Find out all its revoked credential IDs by

Description Issuer's DID.

Request Parameters

1 QueryCredential Y
QueryCredential
1 page Integer Y Number of pages
. Y Number of
2 size Integer .
entries per page
3 did String Y DID

Response Parameters

Query result,
1 Pages<BaseCredential> Y basic info list of
the credential
Pages
(Moo | parametr | Type | Requied | Description

1 page Integer Y Page number

2 size Integer Y Paging Size

3 totalNum Integer Y Total number

4 totalPage Integer Y Total pages

5 result List<BaseCredential> Y List of revoked documents

BaseCredential

1 id String Y Credential ID
2 created String Y Revoked time
10.4.4 Identity Hub
10.4.4.1 Register Hub User by DID
Function name registerHub(String did)
Description Register by DID, if successful, returns the user's ID in the Hub.
Request Parameters
1 did String Y DID
Response Parameters

187

Blockchain-based Service Network User Manual

RegisterHubResult

Y

Registration result

RegisterHubResult

1 success Boolean Y Return true if success, return false if
failure

2 uid String Y ID in the Hub

3 message String Y Result description

10.4.4.2 Register Hub User by Public Key

F‘:;;t::n registerHub(String id, String publicKey, CryptoType cryptoType)
Description Register by Public key. This function allows users define the ID by themselves. If
P successful, returns the user's ID in the Hub.

Request Parameters

1 id String N Self-defined hub ID
2 publicKey String Y Public key
CryptoType String Y ECDSA

Response parameter

1 RegisterHubResult Y Registration result
RegisterHubResult

1 success Boolean Return true if success, return false if failure

2 uid String ID in the Hub

3 message String Result description

10.4.4.3 Save Resource

Function name

saveResource(SaveResource saveResource)

Description

Store the resource to the Hub. If the user stores it himself, the uid and the
ownerUid should be the same. At this time, there is no create permission need and
can call directly; if the issuer stores it for the user after issuing the credentials, the
uid should be the issuer, and the ownerUid should be the user. At this time, the
user must have created WRITE permission for it, otherwise the storage will fail.

Request Parameters

1 SaveResource Y
SaveResource
1 did String Y ID in the Hub
2 content String Y Resource content
url String N The path of the stored
resource. Null when stored by
3 .
the user; required when
stored by the issuer.

188

Blockchain-based Service Network User Manual

4 ownerUid String Y Resource owner’s ID in the
Hub
5 grant Operation Y Operation permissions:
WRITE/UPDATE
6 privateKey String Y Private key
Response Parameters
1 SaveResourceResult Y Save result

SaveResourceResult

1

url

String

The path of the stored resource.

2

encryptKey

String

=

Ciphertext key

10.4.4.4 Get Resource

Function name getResource(String did,String privateKey, String url)

Access the Hub and read the specified resource. Users can directly access, third

Description . . Y
P parties need to obtain authorization from the user to access.

Request Parameters

1 uid String Y ID in the Hub
2 privateKey String Y Private key
url String Y The path of the stored resource.

Response Parameters

1 QueryResourceResp Y Query result

QueryResourceResp

1

content

String

Ciphertext resource content

2

key

String

<

Ciphertext key

10.4.4.5 Delete Resource

Function name

deleteResource(String did,String privateKey, String url)

Description

The resource owner can call this function to delete a certain resource in the Hub.

Request Parameters

1 uid String Y ID in the Hub
2 privateKey String Y Private key
3 url String v The path of the stored
resource.
Response Parameters
1 Boolean Y Return true if success, return

189

Blockchain-based Service Network User Manual

false if failure

10.4.4.6 Create Permissions

Function - . -
name createPermission(CreatePermission createPermission)
Resource owner creates the permissions of accessing to the resource in the Hub for
third parties. Permissions WRITE means store resource, UPDATE means update
.. resource, READ means read resource. An authorization can only be accessed once,
Description

and an authorization with the same uid and the same permission cannot be created
again without access. However, the permissions of UPDATE and READ from the

server side will return the same result for each call.

Request Parameters

1 CreatePermission Y
CreatePermission

1 uid String Y ID in the Hub

The path of the stored resource.
: N | ot pemisin s

permission is READ/UPDATE
3 grant Operation Y “?é)ﬁ%t/lgggﬁg /Sf{(});:D

grantUid String Y Authorized ID in the Hub
grantPublicKey String Y Authorized public key
privateKey String Y Private key

Response Parameters

CreatePermissionResp Y Creation result

CreatePermissionResp

1

url

String Y

The path of the stored resource.

2

key

String Y

Ciphertext key

10.4.4.7 Delete Permissions

Function name

deletePermission(DeletePermission deletePermission)

Description

Resource owner calls this function to delete permissions that are not yet accessed
by a third party.

Request Parameters

1 DeletePermission Y
DeletePermission
1 uid String Y ID in the Hub
) url String Y The path of the stored
resource.
3 grantUid String Y Authorized ID in the Hub

190

Blockchain-based Service Network User Manual

grant

Operation

Operation permissions:
WRITE/UPDATE/READ

privateKey

String

Private key

Response Parameters

1 DeletePermissionResp Y Deletion result
DeletePermissionResp
1 success Boolean Y Return true if success, return false if failure
2 message String Y Result description

10.4.4.8 Query Permissions

Function name

queryPermission(QueryPermission queryPermission)

Description

Resource owner can call this function to query Permissions that have been created.

Request Parameters

1 QueryPermission Y
QueryPermission
1 uid String Y ID in the Hub
2 grantUid String N Authorized ID in the Hub
4 privateKey String Y Private key

Response Parameters

Query result, list of

1 List<PermissionInfo> Y .
Permissions
PermissionInfo
1 uid String Y ID in the Hub
2 grantUid String Y Authorized ID in the Hub
3 url String Y The path of the stored
resource.
. Y Operation permissions:
4 grant String WRITE/UPDATE/READ
createTime LocalDateTime Y Authorization created time
readTime LocalDateTime N Authorization used time
Access flag. YES:
7 flag UsedFlag Y accessed; NO: Not
accessed
Delete flag. 0: Deleted; 1:
8 status Integer Y Not deleted
9 key String N Ciphertext key
10 ownerKey String N Owner’s key

191

Blockchain-based Service Network User Manual

10.4.4.9 Query Granted Permissions

Function name queryGrantedPermission(QueryGrantedPermission queryPermission)

Users can look up all or part of the permission records authorized to them in three
Description dimensions: the uid of the resource owner, whether it has been accessed and the
permission type.

Request Parameters

1 QueryGrantedPermission Y
QueryGrantedPermission
1 uid String Y ID in the Hub
. . Resource owner’s ID in
2 grantUid String N the Hub
. Operation permissions:

3 grant Operation N WRITE/UPDATE/READ
Access flag. YES:

4 flag UsedFlag N accessed; NO: Not
accessed

5 privateKey String Y Private key

Response Parameters

1 List<GrantPermissionInfo> Y Query regul't, list of
Permissions
GrantPermissionInfo
1 url String Y The path of the stored
resource.
. Y Operation permissions:
2 grant String WRITE/UPDATE/READ
Delete flag. 0: Deleted; 1:
3 status Integer Not deleted
4 createTime LocalDateTime Y Authorization created time
5 readTime LocalDateTime N Authorization used time
Access flag. YES:
6 flag UsedFlag Y accessed; NO: Not
accessed
. . Resource owner’s ID in
7 ownerUid String Y the Hub
8 key String N Ciphertext key
9 ownerKey String N Owner’s key
10.4.4.10 Query Resource Operation Record
Function name queryResourceHistory(QueryResourceHistory queryResourceHistory)
Description Resource owner calls this function to query the operation record of the resource.

Request Parameters

1 QueryResourceHistory Y

192

Blockchain-based Service Network User Manual

QueryResourceHistory
1 uid String Y ID in the Hub
) url String N The path of the stored
resource.
. . Authorization type:
3 operation Operation N WRITE/UPDATE/DELETE
4 privateKey String Y Private key

Response Parameters

1 List<ResourceHistorylnfo> Y Query regul.t, list of
Permissions
ResourceHistoryInfo
1 operationUid String Y Operator’s ID in the Hub
2 ownerUid String Y Owner’s ID in the Hub
. . Y Operation type:

3 operation String WRITE/UPDATE/READ

4 content String Y Ciphertext resource
content

5 url String Y The path of the stored
resource.

6 key String N Ciphertext key

7 operationTime LocalDateTime Y Operated time

10.4.4.11 Change Resource Owner
Function name transferOwner(TransferOwner transferOwner)

Description Change the resource owner in the Hub.

Request Parameters

1 TransferOwner Y
TransferOwner
1 uid String Y ID in the Hub
) url String v The path of the
stored resource.
. . New owner’s ID in
3 newOwnerUid String Y the Hub
4 newOwnerPublicKey String Y New OWEZ; s public
5 privateKey String Y Private key
Response Parameters
Return true if
1 Boolean Y success, return false
if failure

10.4.4.12 Decrypt Resource

193

Blockchain-based Service Network User Manual

Function name decrypt(String content, String encptyKey, String privateKey)

Decrypt the ciphertext resource content returned from the Get Resource
Description interface using the ciphertext key returned from the Get Resource interface to
get the plaintext resource content

Request Parameters

1 content String v Ciphertext resource
content
encptyKey String Y Ciphertext key
3 privateKey String Y Private key

Response Parameters

Plaintext resource

1 String Y content

194

Blockchain-based Service Network User Manual

11 Account Management

In the My Account page, the user can view details of their card and transactions they performed
on the network. To work with My Account, follow these steps:

1. In the User Center menu, click the dropdown to reveal the list, in the menu list, click My
Account to display the page.

2. To update the user Card Information, click the Update card information to display the
My Credit Card page. The user will be redirected to the Stripe website. The BSN portal
can never see and does not store credit card information.

3. Update the card details as needed and click Update.

*Oinly the last 4 digits of the credit card number are retained on this website, and the rest of the information

i= not retained.

4. To search a bill in the My Bills section, enter or select the following:

e Bill Number - Enter the bill number if known

e Created Date - Select a start and end date

e Service Name - Enter a service name if known

e Status - Select from the options available in the dropdown

e Bill Type - Select from the options available in the dropdown
e Click Search to display the bill information.

My Bills

Bill Number Service Name Bill Type Al

- Sas m Reset

5. In the Bill list, under the Status and Action columns, the user can perform certain actions
including Pay and Details on each bill. To pay a bill, click Pay and to View a bill, click
Details.

Bill Number Service Name Bill Type Total Amount (USD) Payment Amount (USD) Created Date Status Action
5F39EAT142CC44C9EBCFIDASEDT WineTrace Data Usage 0.00 0.00 (UTC+8:00) 07/21/2021 02:00:05 Paid Details
33B3753E168E469FA77F11ECT3.. WineTrace Service Publish 860.03 0.00 (UTC+8:00) 07/14/2021 10:30:40 Partial Refund Details
4E34B5D582E34ABBADF5F7052D... WineTrace Service Publish 863.35 0.00 (UTC+8:00) 06/28/2021 14:34:42 Expired Details
9D6(C81B4DOFA4DETATFE881B1 Team demonstration Service Publish 863.35 0.00 (UTC+8:00) 06/28/2021 13:47:22 Expired Details

195

Blockchain-based Service Network User Manual

12 Online Documentation

White Papers

Name Version | Update Details

BSN Introduction White paper V1.05 February 51,2020 | PDF

BSN Technical White Paper V1.0.0 | April 25",2020 PDF

Site Documents

Name Version | Update Details

User Manual 1.8.1 October 18",2024 Online PDF
Fabric Examples 1.0.1 April 242020 Github

FISCO BCOS Examples 1.0.1 April 2412020 Github

SDK Examples 1.0.1 April 24™,2020 Github
Permissioned Frameworks

Name Official Website Details

Hyperledger Fabric https://www.hyperledger.org/ Github Documentation
FISCO BCOS http://fisco-bcos.org/ Github Documentation

ConsenSys Quorum

https://consensys.net/quorum/ Github Documentation

Hyperledger Besu https://www.hyperledger.org/use/besu | Github Documentation
Public Chains

Name Official Website Details

ETH https://ethereum.org/ Github Documentation

Tezos https://tezos.com/ Github Documentation
EOS https://eos.i0/ Github Documentation
Near https://near.org/ Github Documentation

196

https://global.bsnbase.com/static/tmpFile/BSNIntroductionWhitepaper.pdf
https://global.bsnbase.com/static/tmpFile/BSNTechnicalWhitePaper.pdf
https://bsnbase.io/static/tmpFile/bzsc/index.html
https://bsnbase.io/static/tmpFile/BSNUserManual.pdf
https://github.com/BSNDA/FabricBaseChaincode
https://github.com/BSNDA/FISCOBaseContract
https://github.com/BSNDA
https://www.hyperledger.org/
https://github.com/hyperledger/fabric/tree/v1.4.3
https://hyperledger-fabric.readthedocs.io/en/release-1.4/
http://fisco-bcos.org/
https://github.com/FISCO-BCOS/FISCO-BCOS
https://fisco-bcos-documentation.readthedocs.io/en/latest/
https://consensys.net/quorum/
https://github.com/ConsenSys/quorum
https://docs.goquorum.consensys.net/en/stable/
https://www.hyperledger.org/use/besu
https://github.com/hyperledger/besu/
https://besu.hyperledger.org/en/stable/
https://ethereum.org/
https://github.com/Ethereum
https://ethereum.org/en/developers
https://tezos.com/
https://tezos.gitlab.io/
https://developers.tezos.com/
https://eos.io/
https://github.com/EOSIO
https://developers.eos.io/
https://near.org/
https://github.com/near
https://docs.near.org/

Blockchain-based Service Network User Manual

13 Contact Us

If you have any questions or find any errors in this manual, please contact us:
Customer service hotline: +86-400-071-8215 (workday: 08:00 - 17:30)

Email: support@bsnbase.com

Telegram BSN Support Group: https://t.me/bsnsupport

International Social Media:

Official BSN SNS

f @ @ ™

@bsnbase @bsnbase @globalbsn r/BSNBase @bsnbase

gé bsnbase.io = info@bsnbase.com ' t.me/bsnsupport

197

mailto:support@bsnbase.com
https://t.me/bsnsupport

	1 BSN Introduction
	1.1 Brief Introduction
	1.2 BSN Services
	1.2.1 Permissioned Services
	1.2.2 Permissionless Services
	1.2.3 Interchain Services

	1.3 Terminologies

	2 Release Notes
	3 Quick Start
	3.1 Permissioned Blockchain
	3.2 Permissionless Blockchain
	3.3 Documentation

	4 Registration and Activation
	4.1 Registration
	4.2 Login
	4.3 Forgot Password

	5 Permissioned Services
	5.1 Overview
	5.2 BSN Keys and Certificates Mechanism
	5.2.1 BSN Keys and Certificates Mechanism
	5.2.2 Locally generate the DApp access key pair

	5.3 DApp Services Publication and Participation
	5.3.1 Overview
	5.3.2 DApp Services Publication
	5.3.2.1 Create a New DApp Service
	5.3.2.2 Upload Chaincode Package
	5.3.2.3 Define Service Functions and Roles
	5.3.2.4 Select the Public City Nodes to deploy the service
	5.3.2.5 Select Certificate Mode
	5.3.2.6 Pay bills and submit for approval

	5.3.3 DApp Services Management
	5.3.3.1 Invite Participants
	5.3.3.2 Edit Basic Information
	5.3.3.3 Service Upgrade
	5.3.3.4 Configuration Upgrade
	5.3.3.5 Details
	5.3.3.6 Service Unsubscribe

	5.3.4 DApp Services Participation
	5.3.4.1 Apply for a Service
	5.3.4.2 Select Roles and City Nodes
	5.3.4.3 Apply Certificate Mode
	5.3.4.4 Submit for approval
	5.3.4.5 Approve the Request
	5.3.4.6 Download and renew a certificate
	5.3.4.7 Configuration parameters for service access

	5.4 Off-BSN System Access Guide
	5.4.1 Overview
	5.4.2 BSN Smart Contract Package Requirements
	5.4.2.1 Hyperledger Fabric smart contract package requirements
	5.4.2.2 Hyperledger Fabric preset smart contract package
	5.4.2.3 FISCO BCOS smart contract package requirements
	5.4.2.4 FISCO BCOS preset smart contract package

	5.4.3 PCN Gateway Fabric API
	5.4.3.1 DApp Access Signature Algorithm
	5.4.3.2 Keys and Certificate Modes
	5.4.3.3 Get DApp information API
	5.4.3.4 User Registration API
	5.4.3.5 Invoke chaincode API in Key Trust Mode
	5.4.3.6 User certificate registration in Public Key Upload Mode
	5.4.3.7 Invoke chaincode in Public Key Upload Mode
	5.4.3.8 Get transaction information API
	5.4.3.9 Get transaction data API
	5.4.3.10 Get block information API
	5.4.3.11 Get block data API
	5.4.3.12 Get the latest ledger information API
	5.4.3.13 Chaincode event registration API
	5.4.3.14 Block event registration API
	5.4.3.15 Chaincode and block event query API
	5.4.3.16 Remove chaincode and block event API
	5.4.3.17 Chaincode and block event notification API
	5.4.3.18 Transaction status description

	5.4.4 PCN Gateway FISCO API
	5.4.4.1 DApp Access Signature Algorithm
	5.4.4.2 Key and Certificate Modes
	5.4.4.3 Get DApp information API
	5.4.4.4 User Registration API
	5.4.4.5 Invoke Smart Contract API in Key Trust Mode
	5.4.4.6 Invoke Smart Contract API Public Key Upload Mode
	5.4.4.7 Get Transaction Receipt API
	5.4.4.8 Get Transaction information API
	5.4.4.9 Get Block Information API
	5.4.4.10 Get DApp Block Height API
	5.4.4.11 Get Total Number of DApp Transactions API
	5.4.4.12 Get Total Number of Block Transactions API
	5.4.4.13 Smart Contract Event Registration API
	5.4.4.14 Smart Contract Event Query API
	5.4.4.15 Remove Smart Contract Event API
	5.4.4.16 Smart Contract Event Notification API
	5.4.4.17 Transaction Receipt Status

	5.5 Development SDK and Examples
	5.5.1 BSN Gateway SDK Example
	5.5.2 Sample Smart Contract Packages

	5.6 BSN Testnet Services
	5.6.1 Overview
	5.6.2 Permissioned DApp Service Publication
	5.6.3 Interchain Services on BSN Testnet

	6 Dedicated Node Services
	6.1 Overview
	6.2 Project Management
	6.2.1 Create Projects
	6.2.2 Edit Projects
	6.2.3 Delete Projects
	6.2.4 View Project Details
	6.2.5 Unsubscribe Projects
	6.2.6 Edit Authorized Account
	6.2.7 Configuration Upgrade

	6.3 Access Instructions
	6.3.1 ConsenSys Quorum Access Instruction
	6.3.2 Hyperledger Fabric Access Instruction
	6.3.3 Hyperledger Besu Access Instruction

	7 Permissionless Services
	7.1 Overview
	7.2 Select Plans
	7.3 Create and Manage Projects
	7.4 Off-BSN system Access Guide
	7.4.1 Overview
	7.4.2 Ethereum
	7.4.3 EOS
	7.4.4 Tezos
	7.4.5 Near

	8 Interchain Services
	8.1 Interchain Service Management
	8.1.1 Open Interchain Services
	8.1.2 View Interchain Services
	8.1.3 Deactivation and Activation of Interchain Services

	8.2 Interchain Services based on Poly Enterprise
	8.2.1 Overview
	8.2.2 Interchain Services based on Hyperledger Fabric
	8.2.2.1 Application Contract Development Guide in BSN production environment
	8.2.2.2 Application Contract Development Guide in BSN Testnet
	8.2.2.3 Demo Contract Example

	8.2.3 Interchain Services based on FISCO BCOS
	8.2.3.1 Application Contract Development Guide in BSN production environment
	8.2.3.2 Application Contract Development Guide in BSN Testnet
	8.2.3.3 Demo Contract Example

	8.2.4 Interchain Services based on Ethereum Ropsten
	8.2.5 Interchain Services based on Neo Testnet

	9 IDE Services
	9.1 Overview
	9.2 Access Instructions
	9.2.1 Service publication of permissioned chains
	9.2.2 Service editing and upgrading of permissioned chains
	9.2.3 Access to permissionless services
	9.2.4 BSN Testnet Services

	9.3 My IDE

	10 DID Services
	10.1 Overview
	10.2 HTTP API
	10.2.1 DID API
	10.2.1.1 Verify DID Document
	10.2.1.2 Add DID Document to the chain
	10.2.1.3 Get DID Document
	10.2.1.4 Verify DID Signature
	10.2.1.5 Update Key

	10.2.2 Issuer
	10.2.2.1 Issuer Registration
	10.2.2.2 Query Issuer
	10.2.2.3 Register Credential Template
	10.2.2.4 Query Credential Template List
	10.2.2.5 Query Credential Template
	10.2.2.6 Update Credential Template

	10.2.3 Credential
	10.2.3.1 Issue Credential
	10.2.3.2 Verify Credential
	10.2.3.3 Revoke Credential
	10.2.3.4 Query Revoked Credential

	10.2.4 Identity Hub
	10.2.4.1 Register Hub User by DID
	10.2.4.2 Register Hub User by Public Key
	10.2.4.3 Save Resource
	10.2.4.4 Get Resource
	10.2.4.5 Delete Resource
	10.2.4.6 Create Permissions
	10.2.4.7 Delete Permissions
	10.2.4.8 Query Permissions
	10.2.4.9 Query Granted Permissions
	10.2.4.10 Query Operation Record of the Resource
	10.2.4.11 Change Resource Owner

	10.3 Response Code
	10.4 SDK
	10.4.1 DID
	10.4.1.1 Generate Private and Public Keys by Mnemonics
	10.4.1.2 Create DID
	10.4.1.3 Verify DID Document
	10.4.1.4 Upload DID Document
	10.4.1.5 Get DID Document
	10.4.1.6 Verify DID
	10.4.1.7 Key Update

	10.4.2 Issuer
	10.4.2.1 Register Issuer
	10.4.2.2 Query Issuer
	10.4.2.3 Register credential template
	10.4.2.4 Query Credential Template List
	10.4.2.5 Query Credential Template
	10.4.2.6 Update Credential Template

	10.4.3 Credential
	10.4.3.1 Create Credential
	10.4.3.2 Verify Credential
	10.4.3.3 Revoke Credential
	10.4.3.4 Query Revoked Credential

	10.4.4 Identity Hub
	10.4.4.1 Register Hub User by DID
	10.4.4.2 Register Hub User by Public Key
	10.4.4.3 Save Resource
	10.4.4.4 Get Resource
	10.4.4.5 Delete Resource
	10.4.4.6 Create Permissions
	10.4.4.7 Delete Permissions
	10.4.4.8 Query Permissions
	10.4.4.9 Query Granted Permissions
	10.4.4.10 Query Resource Operation Record
	10.4.4.11 Change Resource Owner
	10.4.4.12 Decrypt Resource

	11 Account Management
	12 Online Documentation
	13 Contact Us

